Kramers' rate for systems with multiplicative noise
被引:10
|
作者:
Rosas, Alexandre
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Paraiba, CCEN, Dept Fis, Caixa Postal 5008, BR-58059900 Joao Pessoa, Paraiba, BrazilUniv Fed Paraiba, CCEN, Dept Fis, Caixa Postal 5008, BR-58059900 Joao Pessoa, Paraiba, Brazil
Rosas, Alexandre
[1
]
Pinto, Italo'Ivo Lima Dias
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
Univ Calif San Diego, BioCircuits Inst, La Jolla, CA 92093 USAUniv Fed Paraiba, CCEN, Dept Fis, Caixa Postal 5008, BR-58059900 Joao Pessoa, Paraiba, Brazil
Pinto, Italo'Ivo Lima Dias
[2
,3
]
Lindenberg, Katja
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
Univ Calif San Diego, BioCircuits Inst, La Jolla, CA 92093 USAUniv Fed Paraiba, CCEN, Dept Fis, Caixa Postal 5008, BR-58059900 Joao Pessoa, Paraiba, Brazil
Lindenberg, Katja
[2
,3
]
机构:
[1] Univ Fed Paraiba, CCEN, Dept Fis, Caixa Postal 5008, BR-58059900 Joao Pessoa, Paraiba, Brazil
[2] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, BioCircuits Inst, La Jolla, CA 92093 USA
Kramers' rate for the passage of trajectories X(t) over an energy barrier due to thermal or other fluctuations is usually associated with additive noise. We present a generalization of Kramers' rate for systems with multiplicative noise. We show that the expression commonly used in the literature for multiplicative noise is not correct, and we present results of numerical integrations of the Langevin equation for dX(t)/dt evolving in a quartic bistable potential which corroborate our claim.