Multiple-event probability in general-relativistic quantum mechanics. II. A discrete model

被引:3
|
作者
Mondragon, Mauricio [1 ]
Perez, Alejandro [1 ]
Rovelli, Carlo [1 ]
机构
[1] Univ Mediterranee, Ctr Phys Theor Luminy, F-13288 Marseille, France
关键词
D O I
10.1103/PhysRevD.76.064005
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We introduce a simple quantum mechanical model in which time and space are discrete and periodic. These features avoid the complications related to continuous-spectrum operators and infinite-norm states. The model provides a tool for discussing the probabilistic interpretation of generally covariant quantum systems, without the confusion generated by spurious infinities. We use the model to illustrate the formalism of general-relativistic quantum mechanics, and to test the definition of multiple-event probability introduced in a companion paper [Phys. Rev. D 75, 084033 (2007)]. We consider a version of the model with unitary time evolution and a version without unitary time evolution.
引用
收藏
页数:8
相关论文
共 20 条
  • [1] Multiple-event probability in general-relativistic quantum mechanics
    Hellmann, Frank
    Mondragon, Mauricio
    Perez, Alejandro
    Rovelli, Carlo
    PHYSICAL REVIEW D, 2007, 75 (08)
  • [2] For general-relativistic quantum mechanics.
    Jehle, Herbert
    ZEITSCHRIFT FUR PHYSIK, 1935, 94 (11-12): : 692 - 706
  • [3] Corrections and comments to work: For general-relativistic quantum mechanics
    Jehle, Herbert
    ZEITSCHRIFT FUR PHYSIK, 1936, 100 (06): : 717 - 717
  • [4] Analogy between scale symmetry and relativistic mechanics. II. Electric analog of turbulence
    Dubrulle, B
    Graner, F
    PHYSICAL REVIEW E, 1997, 56 (06): : 6435 - 6442
  • [5] Noncommutative Unification of General Relativity and Quantum Mechanics. A Finite Model
    Michael Heller
    Zdzislaw Odrzygóźdź
    Leszek Pysiak
    Wieslaw Sasin
    General Relativity and Gravitation, 2004, 36 : 111 - 126
  • [6] Noncommutative unification of general relativity and quantum mechanics.: A finite model
    Heller, M
    Odrzygózdz, Z
    Pysiak, L
    Sasin, W
    GENERAL RELATIVITY AND GRAVITATION, 2004, 36 (01) : 111 - 126
  • [7] GENERAL-RELATIVISTIC QUANTUM FIELD-THEORY - EXACTLY SOLUBLE MODEL
    CANDELAS, P
    RAINE, DJ
    PHYSICAL REVIEW D, 1975, 12 (04): : 965 - 974
  • [8] Probability and quantum symmetries. II. The theorem of noether in quantum mechanics
    Albeverio, S.
    Rezende, J.
    Zambrini, J. -C.
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (06)
  • [9] Pseudospin symmetry in supersymmetric quantum mechanics. II. Spin- orbit effects
    Shen, Shihang
    Liang, Haozhao
    Zhao, Pengwei
    Zhang, Shuangquan
    Meng, Jie
    PHYSICAL REVIEW C, 2013, 88 (02):
  • [10] Superintegrability with third order integrals of motion, cubic algebras, and supersymmetric quantum mechanics. II. Painleve transcendent potentials
    Marquette, Ian
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (09)