Thiolene-based microfluidic flow cells for surface plasmon resonance imaging

被引:10
|
作者
Sheppard, Gareth [1 ]
Oseki, Takao [2 ]
Baba, Akira [3 ]
Patton, Derek [4 ]
Kaneko, Futao [2 ]
Mao, Leidong [1 ]
Locklin, Jason [1 ]
机构
[1] Univ Georgia, Nanoscale Sci & Engn Ctr, Fac Engn, Dept Chem, Athens, GA 30602 USA
[2] Niigata Univ, Grad Sch Sci & Technol, Nishi Ku, Niigata 9502181, Japan
[3] Niigata Univ, Ctr Transdisciplinary Res, Nishi Ku, Niigata 9502181, Japan
[4] Univ So Mississippi, Sch Polymers & High Performance Mat, Hattiesburg, MS 39406 USA
来源
BIOMICROFLUIDICS | 2011年 / 5卷 / 02期
关键词
PROTEIN INTERACTIONS; POLY(DIMETHYLSILOXANE); FILMS; CHIP; PHOTOPOLYMERIZATION; STREPTAVIDIN; IMMUNOASSAY; MICROARRAYS; MICROSCOPY; KINETICS;
D O I
10.1063/1.3596395
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Thiolene-based microfluidic devices have been coupled with surface plasmon resonance imaging (SPRI) to provide an integrated platform to study interfacial interactions in both aqueous and organic solutions. In this work, we develop a photolithographic method that interfaces commercially available thiolene resin to gold and glass substrates to generate microfluidic channels with excellent adhesion that leave the underlying sensor surface free from contamination and readily available for surface modification through self-assembly. These devices can sustain high flow rates and have excellent solvent compatibility even with several organic solvents. To demonstrate the versatility of these devices, we have conducted nanomolar detection of streptavidin-biotin interactions using in situ SPRI. (C) 2011 American Institute of Physics. [doi:10.1063/1.3596395]
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Microfluidic device for immunoassays based on surface plasmon resonance imaging
    Luo, Yiqi
    Yu, Fang
    Zare, Richard N.
    LAB ON A CHIP, 2008, 8 (05) : 694 - 700
  • [2] A Novel Microfluidic Flow Rate Detection Method Based on Surface Plasmon Resonance Temperature Imaging
    Deng, Shijie
    Wang, Peng
    Liu, Shengnan
    Zhao, Tianze
    Xu, Shanzhi
    Guo, Mingjiang
    Yu, Xinglong
    SENSORS, 2016, 16 (07)
  • [3] Poly(dimethylsiloxane) microfluidic flow cells for surface plasmon resonance spectroscopy
    Wheeler, AR
    Chah, S
    Whelan, RJ
    Zare, RN
    SENSORS AND ACTUATORS B-CHEMICAL, 2004, 98 (2-3) : 208 - 214
  • [4] Parallel microfluidic surface plasmon resonance imaging arrays
    Ouellet, Eric
    Lausted, Christopher
    Lin, Tao
    Yang, Cheng Wei T.
    Hood, Leroy
    Lagally, Eric T.
    LAB ON A CHIP, 2010, 10 (05) : 581 - 588
  • [5] Study on the Flow Field Distribution in Microfluidic Cells for Surface Plasmon Resonance Array Detection
    Chen, Wanwan
    Li, Jing
    Wang, Peng
    Ma, Shuai
    Li, Bin
    MATERIALS, 2024, 17 (10)
  • [6] Continuous-flow microfluidic printing of proteins for array-based applications including surface plasmon resonance imaging
    Natarajan, Sriram
    Katsamba, Phim S.
    Miles, Adam
    Eckman, Josh
    Papalia, Giuseppe A.
    Rich, Rebecca L.
    Gale, Bruce K.
    Myszka, David G.
    ANALYTICAL BIOCHEMISTRY, 2008, 373 (01) : 141 - 146
  • [7] Surface plasmon resonance imaging of excitable cells
    Howe, Carmel L.
    Webb, Kevin F.
    Abayzeed, Sidahmed A.
    Anderson, David J.
    Denning, Chris
    Russell, Noah A.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2019, 52 (10)
  • [8] Wettability Alteration of a Thiolene-Based Polymer (NOA81): Surface Characterization and Fabrication Techniques
    Masouminia, Mahtab
    Dalnoki-Veress, Kari
    de Lannoy, Charles-Francois
    Zhao, Benzhong
    LANGMUIR, 2023, 39 (07) : 2529 - 2536
  • [9] Surface Plasmon Resonance Imaging
    Shen Gangyi
    Chen Yi
    Zhang Yiming
    Cui Jian
    PROGRESS IN CHEMISTRY, 2010, 22 (08) : 1648 - 1655
  • [10] Surface plasmon resonance imaging
    Steiner, G
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2004, 379 (03) : 328 - 331