Quasi-isometric surface parameterization

被引:2
|
作者
Garanzha, VA [1 ]
机构
[1] Russian Acad Sci, Ctr Comp, Moscow 117333, Russia
关键词
surface parameterization; Bi-Lipschitz mappings; polyconvex functional; minimal distortion;
D O I
10.1016/j.apnum.2005.04.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Parameterization of surface is defined by a one-to-one mapping from a planar domain to the surface. Well established methods based on harmonic, conformal and quasi-conformal mappings may create parameterizations with singularities. Singularity-free parameterization technique is suggested based on the concept of quasi-isometric mappings. Well-posed variational formulations for quasi-isometric parameterizations are discussed based on existence theory for hyperelasticity. Distortion minimization, invariance and mesh independence are discussed with numerical examples. (c) 2005 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:295 / 311
页数:17
相关论文
共 50 条
  • [1] Quasi-isometric parameterization for texture mapping
    Sun, Xianfang
    Hancock, Edwin R.
    PATTERN RECOGNITION, 2008, 41 (05) : 1732 - 1743
  • [2] Quasi-Isometric Mesh Parameterization Using Heat-Based Geodesics and Poisson Surface Fills
    Mejia-Parra, Daniel
    Sanchez, Jairo R.
    Posada, Jorge
    Ruiz-Salguero, Oscar
    Cadavid, Carlos
    MATHEMATICS, 2019, 7 (08)
  • [3] QUASI-ISOMETRIC FOLIATIONS
    FENLEY, SR
    TOPOLOGY, 1992, 31 (03) : 667 - 676
  • [4] MULTI-SURFACE QUASI-ISOMETRIC FLATTENING OF THE CORTEX
    Khosravi, Hamid
    Soltanian-Zadeh, Hamid
    2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), 2014, : 1226 - 1229
  • [5] Quasi-isometric singular foliations
    Diop, ECM
    INDAGATIONES MATHEMATICAE-NEW SERIES, 1998, 9 (01): : 15 - 29
  • [6] UNIFORMLY QUASI-ISOMETRIC FOLIATIONS
    KELLUM, M
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1993, 13 : 101 - 122
  • [7] A Quasi-Isometric Embedding Algorithm
    David W. Dreisigmeyer
    Pattern Recognition and Image Analysis, 2019, 29 : 280 - 283
  • [9] Dynamics of quasi-isometric foliations
    Hammerlindl, Andy
    NONLINEARITY, 2012, 25 (06) : 1585 - 1599
  • [10] A Quasi-Isometric Embedding Algorithm
    Dreisigmeyer, David W.
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2019, 29 (02) : 280 - 283