共 50 条
Nanostructured Garnet-Type Solid Electrolytes for Lithium Batteries: Electrospinning Synthesis of Li7La3Zr2O12 Nanowires and Particle Size-Dependent Phase Transformation
被引:87
|作者:
Yang, Ting
[1
]
Gordon, Zachary D.
[1
]
Li, Ying
[1
]
Chan, Candace K.
[1
]
机构:
[1] Arizona State Univ, Sch Engn Matter Transport & Energy, Mat Sci & Engn, Tempe, AZ 85287 USA
来源:
关键词:
ION CONDUCTION;
GRAIN-GROWTH;
NANOCRYSTALLINE CERAMICS;
TETRAGONAL LI7LA3ZR2O12;
STATE ELECTROLYTES;
LI5LA3M2O12;
M;
STABILITY;
ZIRCONIA;
TIO2;
TA;
D O I:
10.1021/acs.jpcc.5b03589
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Lithium lanthanum zirconate (LLZO) is a promising ceramic solid electrolyte for all-solid-state lithium batteries with improved safety characteristics. However, the different phases of LLZO differ in lithium ionic conductivity by several orders of magnitude, with extrinsic dopants often required to stabilize the high conductivity cubic phase. Here we show that cubic LLZO can be stabilized at room temperature in nano-structured particles without the use of extrinsic dopants. LLZO nanowires were synthesized using electrospinning and formed cubic phase materials after only 3 h calcination at 700 degrees C. Bulk LLZO with tetragonal structure was transformed to the cubic phase using particle size reduction via ball milling. Heating conditions that promoted particle coalescence and grain growth induced a transformation from the cubic to tetragonal phases in both types of nanostructured LLZO. Detailed structural characterizations with XRD and TEM were performed to understand the LLZO formation processes and phase transformations. This work demonstrates another strategy, namely the use of nanostructuring, as an alternative to extrinsic doping for obtaining cubic phase LLZO.
引用
收藏
页码:14947 / 14953
页数:7
相关论文