Heavy air pollution with a unique "non-stagnant" atmospheric boundary layer in the Yangtze River middle basin aggravated by regional transport of PM2.5 over China

被引:60
|
作者
Yu, Chao [1 ,2 ]
Zhao, Tianliang [1 ]
Bai, Yongqing [3 ]
Zhang, Lei [1 ,4 ]
Kong, Shaofei [5 ]
Yu, Xingna [1 ]
He, Jinhai [1 ]
Cui, Chunguang [3 ]
Yang, Jie [1 ]
You, Yingchang [1 ]
Ma, Guoxu [1 ]
Wu, Ming [1 ]
Chang, Jiacheng [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteoro, Key Lab Aerosol Cloud Precipitat, China Meteorol Adm,PREMIC, Nanjing 210044, Peoples R China
[2] China Power Engn Consulting Grp, Southwest Elect Power Design Inst Co Ltd, Chengdu 610021, Peoples R China
[3] China Meteorol Adm, Inst Heavy Rain, Wuhan 430205, Peoples R China
[4] Chengdu Acad Environm Sci, Chengdu 610031, Peoples R China
[5] China Univ Geosci Wuhan, Sch Environm Studies, Dept Atmospher Sci, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
PARTICLE DISPERSION MODEL; PARTICULATE MATTER; METEOROLOGICAL CONDITIONS; AEROSOL COMPOSITIONS; EASTERN CHINA; HAZE EVENTS; VARIABILITY; FLEXPART; EMISSIONS; CLIMATE;
D O I
10.5194/acp-20-7217-2020
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The regional transport of air pollutants, controlled by emission sources and meteorological factors, results in a complex source-receptor relationship of air pollution change. Wuhan, a metropolis in the Yangtze River middle basin (YRMB) of central China, experienced heavy air pollution characterized by hourly PM2.5 concentrations reaching 471.1 mu g m(-3) in January 2016. To investigate the regional transport of PM2.5 over central eastern China (CEC) and the meteorological impact on wintertime air pollution in the YRMB area, observed meteorological and other relevant environmental data from January 2016 were analyzed. Our analysis presented noteworthy cases of heavy PM2.5 pollution in the YRMB area with unique "non-stagnant" meteorological conditions of strong northerly winds, no temperature inversion, and additional unstable structures in the atmospheric boundary layer. This unique set of conditions differed from the stagnant meteorological conditions characterized by near-surface weak winds, air temperature inversion, and stable structure in the boundary layer that are typically observed in heavy air pollution over most regions in China. The regional transport of PM2.5 over CEC aggravated PM2.5 levels, thus creating heavy air pollution in the YRMB area. This demonstrates a source-receptor relationship between the originating air pollution regions in CEC and the receiving YRMB region. Furthermore, a backward trajectory simulation using a Flexible Particle dispersion (FLEXPART) Weather Research and Forecasting (WRF) model to integrate the air pollutant emission inventory over China was used to explore the patterns of regional transport of PM2.5 governed by the strong northerly winds in the cold air activity of the East Asian winter monsoon season. It was estimated that the regional transport of PM2.5 from non-local air pollutant emissions contributes more than 65 % of the PM2.5 concentrations to the heavy air pollution in the YRMB region during the study period, revealing the importance of the regional transport of air pollutants over China as a causative factor of heavy air pollution over the YRMB area.
引用
收藏
页码:7217 / 7230
页数:14
相关论文
共 50 条
  • [1] Aggravated chemical production of aerosols by regional transport and basin terrain in a heavy PM2.5 pollution episode over central China
    Hu, Weiyang
    Zhao, Yu
    Zhao, Tianliang
    Bai, Yongqing
    Zhao, Chun
    Kong, Shaofei
    Chen, Lei
    Du, Qiuyan
    Zheng, Huang
    Lu, Wen
    Liu, Weichen
    Sun, Xiaoyun
    ATMOSPHERIC ENVIRONMENT, 2023, 294
  • [2] Aggravated chemical production of aerosols by regional transport and basin terrain in a heavy PM2.5 pollution episode over central China
    Hu, Weiyang
    Zhao, Yu
    Zhao, Tianliang
    Bai, Yongqing
    Zhao, Chun
    Kong, Shaofei
    Chen, Lei
    Du, Qiuyan
    Zheng, Huang
    Lu, Wen
    Liu, Weichen
    Sun, Xiaoyun
    ATMOSPHERIC ENVIRONMENT, 2023, 294
  • [3] Evaluation of regional transport of PM2.5 during severe atmospheric pollution episodes in the western Yangtze River Delta, China
    Sulaymon, Ishaq Dimeji
    Zhang, Yuanxun
    Hu, Jianlin
    Hopke, Philip K.
    Zhang, Yang
    Zhao, Bin
    Xing, Jia
    Li, Lin
    Mei, Xiaodong
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2021, 293 (293)
  • [4] Impacts of regional transport and boundary layer structure on the PM2.5 pollution in Wuhan, Central China
    Xiao, Zhisheng
    Miao, Yucong
    Du, Xiaohui
    Tang, Wei
    Yu, Yang
    Zhang, Xin
    Che, Huizheng
    ATMOSPHERIC ENVIRONMENT, 2020, 230
  • [5] Meteorological mechanism of regional PM2.5 transport building a receptor region for heavy air pollution over Central China
    Bai, Yongqing
    Zhao, Tianliang
    Hu, Weiyang
    Zhou, Yue
    Xiong, Jie
    Wang, Ying
    Liu, Lin
    Shen, Lijuan
    Kong, Shaofei
    Meng, Kai
    Zheng, Huang
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 808
  • [6] Synoptic condition and boundary layer structure regulate PM2.5 pollution in the Huaihe River Basin, China
    Yan, Yan
    Cai, Xuhui
    Miao, Yucong
    Yu, Mingyuan
    ATMOSPHERIC RESEARCH, 2022, 269
  • [7] Haze Pollution in the Unstable Atmospheric Boundary Layer Over the West Bank of Taiwan Strait Induced by Regional Transport of PM2.5
    Jiang, Y. C.
    Zhao, T. L.
    Tan, C. H.
    Li, F.
    Zheng, Q. P.
    Shu, Z. Z.
    Ma, X. D.
    Zheng, H.
    Lv, Q. Y.
    EARTH AND SPACE SCIENCE, 2022, 9 (10)
  • [8] Vertical changes of PM2.5 driven by meteorology in the atmospheric boundary layer during a heavy air pollution event in central China
    Sun, Xiaoyun
    Zhao, Tianliang
    Tang, Guiqian
    Bai, Yongqing
    Kong, Shaofei
    Zhou, Yue
    Hu, Jun
    Tan, Chenghao
    Shu, Zhuozhi
    Xu, Jiaping
    Ma, Xiaodan
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 858
  • [9] Diagnostic analysis of wintertime PM2.5 pollution in the North China Plain: The impacts of regional transport and atmospheric boundary layer variation
    Jin, Xipeng
    Cai, Xuhui
    Yu, Mingyuan
    Song, Yu
    Wang, Xuesong
    Kang, Ling
    Zhang, Hongsheng
    ATMOSPHERIC ENVIRONMENT, 2020, 224
  • [10] Aggravation effect of regional transport on wintertime PM2.5 over the middle reaches of the Yangtze River under China's air pollutant emission reduction process
    Bai, Yongqing
    Zhao, Tianliang
    Zhou, Yue
    Kong, Shaofei
    Hu, Weiyang
    Xiong, Jie
    Liu, Lin
    Zheng, Huang
    Meng, Kai
    ATMOSPHERIC POLLUTION RESEARCH, 2021, 12 (07)