CANONICAL FILTRATIONS OF GORENSTEIN INJECTIVE MODULES

被引:5
|
作者
Enochs, Edgar E. [1 ]
Huang, Zhaoyong [2 ]
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
[2] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu Prov, Peoples R China
关键词
Gorenstein injective modules; torsion products; filtrations;
D O I
10.1090/S0002-9939-2010-10686-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The principle "Every result in classical homological algebra should have a counterpart in Gorenstein homological algebra" was given by Henrik Holm. There is a remarkable body of evidence supporting this claim. Perhaps one of the most glaring exceptions is provided by the fact that tensor products of Gorenstein projective modules need not be Gorenstein projective, even over Gorenstein rings. So perhaps it is surprising that tensor products of Gorenstein injective modules over Gorenstein rings of finite Krull dimension are Gorenstein injective. Our main result is in support of the principle. Over commutative, noetherian rings injective modules have direct sum decompositions into indecomposable modules. We will show that Gorenstein injective modules over Gorenstein rings of finite Krull dimension have filtrations analogous to those provided by these decompositions. This result will then provide us with the tools to prove that all tensor products of Gorenstein injective modules over these rings are Gorenstein injective.
引用
收藏
页码:2415 / 2421
页数:7
相关论文
共 50 条
  • [1] Gorenstein Injective Filtrations Over Cohen-Macaulay Rings with Dualizing Modules
    Feickert, Aaron J.
    Sather-Wagstaff, Sean
    ALGEBRAS AND REPRESENTATION THEORY, 2019, 22 (02) : 297 - 319
  • [2] Gorenstein Injective Filtrations Over Cohen-Macaulay Rings with Dualizing Modules
    Aaron J. Feickert
    Sean Sather-Wagstaff
    Algebras and Representation Theory, 2019, 22 : 297 - 319
  • [3] -Gorenstein projective, -Gorenstein injective and -Gorenstein flat modules
    Zhang, Zhen
    Zhu, Xiaosheng
    Yan, Xiaoguang
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2014, 35 (01) : 115 - 124
  • [4] Gorenstein injective modules over Gorenstein rings
    Enochs, EE
    Jenda, OMG
    COMMUNICATIONS IN ALGEBRA, 1998, 26 (11) : 3489 - 3496
  • [5] Coliftings and Gorenstein injective modules
    Enochs, EE
    Jenda, OM
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1998, 38 (02): : 241 - 254
  • [6] ON GORENSTEIN INJECTIVE-MODULES
    ENOCHS, EE
    JENDA, OMG
    COMMUNICATIONS IN ALGEBRA, 1993, 21 (10) : 3489 - 3501
  • [7] ω-Gorenstein injective modules and dimensions
    ZHU HaiYan1
    2Department of Mathematics
    3Department of Mathematics
    ScienceChina(Mathematics), 2011, 54 (03) : 421 - 436
  • [8] A generalization of Gorenstein injective modules
    Mashhad, Fatemeh Mohammadi Aghjeh
    TBILISI MATHEMATICAL JOURNAL, 2021, 14 (03) : 225 - 234
  • [9] ω-Gorenstein injective modules and dimensions
    HaiYan Zhu
    NanQing Ding
    Science China Mathematics, 2011, 54 : 421 - 436
  • [10] ω-Gorenstein injective modules and dimensions
    Zhu HaiYan
    Ding NanQing
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (03) : 421 - 436