Nonparametric, Nonasymptotic Confidence Bands With Paley-Wiener Kernels for Band-Limited Functions

被引:3
|
作者
Csaji, Balazs Csanad [1 ,2 ]
Horvath, Balint [3 ,4 ]
机构
[1] SZTAKI Inst Comp Sci & Control, Eotvos Lorand Res Network ELKH, H-1111 Budapest, Hungary
[2] Eotvos Lorand Univ, Inst Math, H-1053 Budapest, Hungary
[3] SZTAKI Inst Comp Sci & Control, Eotvos Lorand Res Network, H-1052 Budapest, Hungary
[4] Budapest Univ Technol & Econ, Inst Math, H-1111 Budapest, Hungary
来源
关键词
Kernel; Noise measurement; Hilbert space; Standards; Reliability; Buildings; Upper bound; Statistical learning; stochastic systems; estimation; nonlinear system identification; SYSTEM-IDENTIFICATION;
D O I
10.1109/LCSYS.2022.3185143
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This letter introduces a method to construct confidence bands for bounded, band-limited functions based on a finite sample of input-output pairs. The approach is distribution-free w.r.t. the observation noises and only the knowledge of the input distribution is assumed. It is nonparametric, that is, it does not require a parametric model of the regression function and the regions have non-asymptotic guarantees. The algorithm is based on the theory of Paley-Wiener reproducing kernel Hilbert spaces. This letter first studies the fully observable variant, when there are no noises on the observations and only the inputs are random; then it generalizes the ideas to the noisy case using gradient-perturbation methods. Finally, numerical experiments demonstrating both cases are presented.
引用
收藏
页码:3355 / 3360
页数:6
相关论文
共 50 条
  • [1] Paley-Wiener criterion for relaxation functions
    Macdonald, JR
    JOURNAL OF APPLIED PHYSICS, 1997, 82 (03) : 1476 - 1478
  • [2] PALEY-WIENER CRITERION FOR RELAXATION FUNCTIONS
    NGAI, KL
    RAJAGOPAL, AK
    RENDELL, RW
    TEITLER, S
    PHYSICAL REVIEW B, 1983, 28 (10): : 6073 - 6075
  • [3] OSCILLATORY PROPERTIES OF PALEY-WIENER FUNCTIONS
    WALKER, WJ
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1994, 25 (12): : 1253 - 1258
  • [4] Mean oscillation of functions and the Paley-Wiener space
    Torres, RH
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1998, 4 (03) : 283 - 297
  • [5] Paley-Wiener properties for spaces of entire functions
    Nabizadeh, Elmira
    Pfeuffer, Christine
    Toft, Joachim
    ANALYSIS AND MATHEMATICAL PHYSICS, 2020, 10 (02)
  • [6] Sampling of Paley-Wiener functions on stratified groups
    Isaac Pesenson
    Journal of Fourier Analysis and Applications, 1998, 4 : 271 - 281
  • [7] Non-oscillating Paley-Wiener functions
    Ostrovskii, IV
    Ulanovskii, A
    JOURNAL D ANALYSE MATHEMATIQUE, 2004, 92 (1): : 211 - 232
  • [8] Mean oscillation of functions and the Paley-Wiener space
    Rodolfo H. Torres
    Journal of Fourier Analysis and Applications, 1998, 4 : 283 - 297
  • [9] APPROXIMATING PALEY-WIENER FUNCTIONS BY SMOOTHED STEP FUNCTIONS
    BEATY, MG
    DODSON, MM
    HIGGINS, JR
    JOURNAL OF APPROXIMATION THEORY, 1994, 78 (03) : 433 - 445
  • [10] Paley-Wiener Functions with a Generalized Spectral Gap
    Blank, N.
    Ulanovskii, A.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2011, 17 (05) : 899 - 915