Energy Optimization for Milling 304L Steel using Artificial Intelligence Methods

被引:14
|
作者
Bousnina, K. [1 ]
Hamza, A. [1 ]
Ben Yahia, N. [1 ]
机构
[1] Univ Tunis, Higher Natl Sch Engn Tunis ENSIT, Mech Prod & Energy Lab LMPE, Tunis, Tunisia
关键词
Machining processes; Energy efficiency; Energy consumption; RSM; ANN; CUTTING PARAMETERS; SURFACE-ROUGHNESS; STAINLESS-STEEL; CONSUMPTION; EFFICIENCY; PERFORMANCE; TAGUCHI; POWER;
D O I
10.15282/ijame.19.3.2022.05.0765
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
With increased production and productivity in modern industry, particularly in the automotive, aeronautical, agro-food, and other sectors, the consumption of manufacturing energy is rapidly increasing, posing additional precautions and large investments to industries to reduce energy consumption at the manufacturing system level. This research proposes a novel energy optimisation using a response surface methodology (RSM) with artificial neural network (ANN) for machining processes that saves energy while improving productivity.The feed rate was discovered to be the most influential factor in this study, accounting for 84.13 percent of total energy consumed. Furthermore, it has been established that as the material removal rate (MRR) increases, energy efficiency (EE) declines. This optimization of cutting conditions gives us the optimal values of cutting speed Vc = 129.37 m/min, feed rate f = 0.098 mm/rev and depth of cut ap = 0.5 mm. This approach will allow us to decrease the total energy consumed (Etc) by 49.74 % and increase the energy efficiency (EE) by 13.63 %.
引用
收藏
页码:9928 / 9938
页数:11
相关论文
共 50 条
  • [1] Surface integrity in dry milling of 304L steel: A parametric study
    Maurotto, A.
    Tsivoulas, D.
    Burke, M. G.
    2ND CIRP CONFERENCE ON SURFACE INTEGRITY (CSI), 2014, 13 : 156 - 162
  • [2] An energy survey to optimize the technological parameters during the milling of AISI 304L steel using the RSM, ANN and genetic algorithm
    Bousnina, Kamel
    Hamza, Anis
    Ben Yahia, Noureddine
    ADVANCES IN MATERIALS AND PROCESSING TECHNOLOGIES, 2024, 10 (04) : 3562 - 3580
  • [3] Diffusion bonding of AISI 304L steel to low-carbon steel with AISI 304L steel interlayer
    Vigraman, T.
    Ravindran, D.
    Narayanasamy, R.
    MATERIALS & DESIGN, 2012, 34 : 594 - 602
  • [4] Evaluation of sensitization in stainless steel 304 and 304L using nonlinear Rayleigh waves
    Doerr, Christoph
    Kim, Jin-Yeon
    Singh, Preet
    Wall, James J.
    Jacobs, Laurence J.
    NDT & E INTERNATIONAL, 2017, 88 : 17 - 23
  • [5] Weld Solidification Cracking in 304 to 304L Stainless Steel
    Hochanadel, P. W.
    Lienert, T. J.
    Martinez, J. N.
    Martinez, R. J.
    Johnson, M. Q.
    HOT CRACKING PHENOMENA IN WELDS III, 2011, : 145 - 160
  • [6] The microstructure of the base oxide on 304L steel
    Tang, JE
    Halvarsson, M
    Asteman, H
    Svensson, JE
    MICRON, 2001, 32 (08) : 799 - 805
  • [7] Study of microplasticity in 304L stainless steel
    Vaucheret, P
    Galtier, A
    REVUE DE METALLURGIE-CAHIERS D INFORMATIONS TECHNIQUES, 2002, 99 (01): : 63 - 69
  • [8] 3D FEM simulations of shoulder milling operations on a 304L stainless steel
    Maurel-Pantel, A.
    Fontaine, M.
    Thibaud, S.
    Gelin, J. C.
    SIMULATION MODELLING PRACTICE AND THEORY, 2012, 22 : 13 - 27
  • [9] OPTIMIZATION OF HOT WORKABILITY IN STAINLESS STEEL-TYPE AISI 304L USING PROCESSING MAPS
    VENUGOPAL, S
    MANNAN, SL
    PRASAD, YVRK
    METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1992, 23 (11): : 3093 - 3103
  • [10] Friction Welding of Titanium to 304L Stainless Steel Using Interlayers
    Ashfaq, M.
    Rao, K. Prasad
    Rafi, H. Khalid
    Murty, B. S.
    Dey, H. C.
    Bhaduri, A. K.
    PRAKTISCHE METALLOGRAPHIE-PRACTICAL METALLOGRAPHY, 2011, 48 (04): : 188 - 207