Eigenvalues of the drifting Laplacian on complete noncompact Riemannian manifolds

被引:12
|
作者
Zeng, Lingzhong [1 ]
机构
[1] Jiangxi Normal Univ, Coll Math & Informat Sci, Nanchang 330022, Peoples R China
基金
中国国家自然科学基金;
关键词
Drifting Laplacian; Eigenvalues; Noncompact Riemannian manifolds; SHRINKING RICCI SOLITONS; CURVATURE; DIAMETER; BOUNDS; INEQUALITIES;
D O I
10.1016/j.na.2016.03.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate eigenvalues of the eigenvalue problem with Dirichlet boundary condition of the drifting Laplacian on an n-dimensional, complete noncompact Riemannian manifold. Some estimates for eigenvalues are obtained. By utilizing Cheng and Yang recursion formula, we give a sharp upper bound of the kth eigenvalue. As we know, product Riemannian manifolds, Ricci solitons and self-shrinkers are some important Riemannian manifolds. Therefore, we investigate the eigenvalues of the drifting Laplacian on those Riemannian manifolds. In particular, by some theorems of classification for Ricci solitons, we can obtain some eigenvalue inequalities of drifting Laplacian on the Ricci solitons with certain conditions. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [1] Eigenvalues of the bi-drifting Laplacian on the complete noncompact Riemannian manifolds
    Li, Xinyang
    Mao, Jing
    Zeng, Lingzhong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (06):
  • [2] Eigenvalues of the bi-drifting Laplacian on the complete noncompact Riemannian manifolds
    Xinyang Li
    Jing Mao
    Lingzhong Zeng
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [3] Inequalities for eigenvalues of the bi-drifting Laplacian on bounded domains in complete noncompact Riemannian manifolds and related results
    He, Yue
    Pu, Shiyun
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2025, 204 (01) : 327 - 358
  • [4] Inequalities for eigenvalues of the drifting Laplacian on Riemannian manifolds
    Xia, Changyu
    Xu, Hongwei
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2014, 45 (03) : 155 - 166
  • [5] Inequalities for eigenvalues of the drifting Laplacian on Riemannian manifolds
    Changyu Xia
    Hongwei Xu
    Annals of Global Analysis and Geometry, 2014, 45 : 155 - 166
  • [6] Noncompact complete Riemannian manifolds with dense eigenvalues embedded in the essential spectrum of the Laplacian
    Svetlana Jitomirskaya
    Wencai Liu
    Geometric and Functional Analysis, 2019, 29 : 238 - 257
  • [7] Noncompact complete Riemannian manifolds with dense eigenvalues embedded in the essential spectrum of the Laplacian
    Jitomirskaya, Svetlana
    Liu, Wencai
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2019, 29 (01) : 238 - 257
  • [8] EIGENVALUES OF THE LAPLACIAN ON RIEMANNIAN MANIFOLDS
    Cheng, Qing-Ming
    Qi, Xuerong
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (07)
  • [9] Eigenvalues of the bi-Xin-Laplacian on complete Riemannian manifolds
    Hao, Xiaotian
    Zeng, Lingzhong
    COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2023, 15 (02): : 162 - 176
  • [10] BOUNDS FOR EIGENFUNCTIONS OF THE LAPLACIAN ON NONCOMPACT RIEMANNIAN MANIFOLDS
    Cianchi, Andrea
    Maz'ya, Vladimir G.
    AMERICAN JOURNAL OF MATHEMATICS, 2013, 135 (03) : 579 - 635