An experimental study on mechanical and thermal properties of structural lightweight concrete using carbon nanotubes (CNTs) and LECA aggregates after exposure to elevated temperature

被引:19
|
作者
Shahpari, Mehran [1 ]
Bamonte, Patrick [2 ]
Mosallam, Shahram Jalali [3 ]
机构
[1] Univ Sci & Culture, Dept Civil Engn, Tehran, Iran
[2] Politecn Milan, Dept Civil & Environm Engn DICA, Milan, Italy
[3] Islamic Azad Univ, Dept Civil Engn, Isfahan Khorasgan Branch, Esfahan, Iran
关键词
Lightweight concrete; Carbon nanotubes; CNTs; LECA; Elevated temperature; Mechanical properties; Compressive; Splitting tensile; Flexural; Thermal conductivity; HIGH-PERFORMANCE CONCRETE; HIGH-STRENGTH CONCRETE; FIBER-REINFORCED CONCRETE; SELF-COMPACTING CONCRETE; COMPRESSIVE STRENGTH; STEEL-FIBER; POLYPROPYLENE FIBERS; FLY-ASH; SILICA FUME; RESIDUAL STRENGTH;
D O I
10.1016/j.conbuildmat.2022.128376
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The effects of elevated temperature on lightweight structural concrete (LWC) containing Carbon Nanotubes (CNTs) and structural Lightweight Expanded Clay Aggregates (LECA) as a substitute for coarse aggregates are investigated. Mechanical properties such as compressive, indirect tensile strength (in splitting and bending) of a 7-day and 28-day structural LWC (with and without CNTs) have been evaluated under different temperature ranges from ambient temperature up to 800 degrees C. Moreover, in order to capture all aspects, along with characterizing the mechanical response of the concrete, thermal conductivity has also been measured to understand the thermal behavior of structural lightweight concrete. Hereafter, to bring together different results so that the similarities and differences can be seen, each achieved result from present research has been compared to that of literature. Results indicate that all mechanical properties of the structural LWC containing CNTs were improved at different temperatures compared to those without CNTs. The reasons for the improvement were interpreted by Scanning Electron Microscope (SEM). Moreover, thermal test results demonstrate a decrease in thermal conductivity to the advantage of possible high-temperature applications.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] An experimental study on mechanical and thermal properties of structural lightweight concrete using carbon nanotubes (CNTs) and LECA aggregates after exposure to elevated temperature
    Shahpari, Mehran
    Bamonte, Patrick
    Mosallam, Shahram Jalali
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 346
  • [2] The effect of carbon nanotubes on mechanical properties of structural lightweight concrete using LECA aggregates
    Mosallam, Shahram Jalali
    Behbahani, Hamid Pesaran
    Shahpari, Mehran
    Abaeian, Reza
    STRUCTURES, 2022, 35 : 1204 - 1218
  • [3] Mechanical properties of thermal insulation concrete with recycled coarse aggregates after elevated temperature exposure
    Liu, Yuanzhen
    Ji, Haifeng
    Zhang, Jianguang
    Wang, Wenjing
    Chen, Y. Frank
    MATERIALS TESTING, 2016, 58 (7-8) : 669 - 677
  • [4] Experimental study on lightweight concrete using Leca, silica fume, and limestone as aggregates
    Karthik, J.
    Surendra, H. J.
    Prathibha, V. S.
    Kumar, G. Anand
    MATERIALS TODAY-PROCEEDINGS, 2022, 66 : 2478 - 2482
  • [5] Residual mechanical properties of concrete containing lightweight expanded clay aggregate (LECA) after exposure to elevated temperatures
    Dabbaghi, Farshad
    Dehestani, Mehdi
    Yousefpour, Hossein
    STRUCTURAL CONCRETE, 2022, 23 (04) : 2162 - 2184
  • [6] Experimental Study on the Mechanical Properties of Crumb Rubber Concrete after Elevated Temperature
    Han, Yang
    Lv, Zhishuan
    Bai, Yaqiang
    Han, Guoqi
    Li, Dongqiao
    POLYMERS, 2023, 15 (14)
  • [7] Thermal and mechanical properties of structural lightweight concrete containing lightweight aggregates and fly-ash cenospheres
    Zhou, Hongyu
    Brooks, Adam L.
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 198 : 512 - 526
  • [8] MECHANICAL PROPERTIES OF STRUCTURAL LIGHTWEIGHT CONCRETE USING LIGHTWEIGHT AGGREGATES FROM CONSTRUCTION AND DEMOLITION WASTE
    Hung Phong Nguyen
    Ngoc Lan Le
    Thi-Thanh Thao Nguyen
    Cong Thang Nguyen
    Van Tuan Nguyen
    INTERNATIONAL JOURNAL OF GEOMATE, 2023, 25 (110): : 40 - 48
  • [9] Experimental study on mechanical properties of CFRP bar after elevated temperature exposure
    Fang, Zhi
    Huang, Daobin
    Fang, Yawei
    Jiang, Zhengwen
    Tumu Gongcheng Xuebao/China Civil Engineering Journal, 2020, 53 (01): : 52 - 63
  • [10] Mechanical properties of lightweight concrete made with coal ashes after exposure to elevated temperatures
    Ahn, Y. B.
    Jang, J. G.
    Lee, H. K.
    CEMENT & CONCRETE COMPOSITES, 2016, 72 : 27 - 38