Moving Fronts in Integro-Parabolic Reaction-Advection-Diffusion Equations

被引:5
|
作者
Nefedov, N. N. [1 ]
Nikitin, A. G.
Petrova, M. A.
Recke, L.
机构
[1] Moscow MV Lomonosov State Univ, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
PROPAGATION; STABILITY;
D O I
10.1134/S0012266111090096
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider initial-boundary value problems for a class of singularly perturbed nonlinear integro-differential equations. In applications, they are referred to as nonlocal reaction-advection-diffusion equations, and their solutions have moving interior transition layers (fronts). We construct the asymptotics of such solutions with respect to a small parameter and estimate the accuracy of the asymptotics. To justify the asymptotics, we use the asymptotic differential inequality method.
引用
收藏
页码:1318 / 1332
页数:15
相关论文
共 50 条