Parameter estimation for reduced-rank multivariate linear regressions in the presence of correlated noise

被引:0
|
作者
Werner, K [1 ]
Jansson, M [1 ]
机构
[1] Royal Inst Technol, KTH, Dept Signals Sensors & Syst, SE-10044 Stockholm, Sweden
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper considers the problem of estimating the parameters in a reduced-rank multivariate linear regression. Reduced rank linear regression has applications in areas such as econometrics, statistics and signal processing. The proposed method can accommodate noise with both temporal and spatial correlation. It relies on a weighted low rank approximation of the full rank regression matrix obtained from a least squares fit to the data. Numerical studies suggest performance comparable to the maximum likelihood solution proposed in [1] for the white noise case, and an improvement when the noise is temporally correlated.
引用
收藏
页码:2101 / 2105
页数:5
相关论文
共 50 条
  • [1] Maximum likelihood parameter and rank estimation in reduced-rank multivariate linear regressions
    Stoica, P
    Viberg, M
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (12) : 3069 - 3078
  • [2] Statistical analysis of subspace-based estimation of reduced-rank linear regressions
    Gustafsson, T
    Rao, BD
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (01) : 151 - 159
  • [3] Reduced-rank Least Squares Parameter Estimation in the Presence of Byzantine Sensors
    Nagananda, K. G.
    Blum, Rick S.
    Koppel, Alec
    2020 54TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2020, : 30 - 35
  • [4] Efficient estimation of reduced-rank partial envelope model in multivariate linear regression
    Zhang, Jing
    Huang, Zhensheng
    Xiong, Yan
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2021, 10 (02)
  • [5] On multivariate linear regression shrinkage and reduced-rank procedures
    Reinsel, GC
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1999, 81 (02) : 311 - 321
  • [6] Rank estimation in reduced-rank regression
    Bura, E
    Cook, RD
    JOURNAL OF MULTIVARIATE ANALYSIS, 2003, 87 (01) : 159 - 176
  • [7] Reduced-rank linear regression
    Stoica, P
    Viberg, M
    8TH IEEE SIGNAL PROCESSING WORKSHOP ON STATISTICAL SIGNAL AND ARRAY PROCESSING, PROCEEDINGS, 1996, : 542 - 545
  • [8] Partially reduced-rank multivariate regression models
    Reinsel, Gregory C.
    Velu, Raja P.
    STATISTICA SINICA, 2006, 16 (03) : 899 - 917
  • [9] Optimal reduced-rank estimation and filtering
    Hua, YB
    Nikpour, M
    Stoica, P
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (03) : 457 - 469
  • [10] Envelope-based sparse reduced-rank regression for multivariate linear model
    Guo, Wenxing
    Balakrishnan, Narayanaswamy
    He, Mu
    JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 195