Optimized Fractional Order Conditional Integrator

被引:0
|
作者
Luo, Ying [1 ,2 ]
Chen, YangQuan [1 ]
Pi, Youguo [2 ]
Monje, Concepcion A. [3 ]
Vinagre, Blas M. [4 ]
机构
[1] Utah State Univ, Dept Elect & Comp Engn, Logan, UT 84322 USA
[2] South China Univ Technol, Dept Automat Sci & Engn, Guangzhou, Guangdong, Peoples R China
[3] Univ Carlos III Madrid, Higher Tech Sch, Dept Syst Engn & Automat, Madrid, Spain
[4] Univ Extremadura, Ind Engn Sch, Dept Elect Elect & Automat Engn, Badajoz, Spain
关键词
Clegg conditional integrator; intelligent conditional integrator; fractional order conditional integrator; phase delay; high order harmonic wave; describing function; optimality specifications; RESET CONTROL-SYSTEMS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, an optimized fractional order conditional integrator (OFOCI) is proposed. The key feature of this OFOCI is that, the fractional order alpha and the parameter k for the "hold" value in the course of integration can be tuned following the analytical optimality design specifications, to achieve the optimized performance not achievable using integer order conditional integrators. The proposed optimality specifications are given to satisfy the desired phase delay, and minimize the preferred magnitude ratio, which can be calculated from the high order harmonic magnitudes divided by the magnitude of the fundamental wave. The numerical solution of calculating the optimized parameters alpha and k of the OFOCI is introduced. The phase delays and magnitude ratios of four designed OFOCIs are compared with the integer order conditional integrators. Simulation results with the FFT spectra are also presented to validate the theoretical analysis.
引用
收藏
页码:6686 / 6691
页数:6
相关论文
共 50 条
  • [1] Optimized fractional order conditional integrator
    Luo, Ying
    Chen, YangQuan
    Pi, YouGuo
    Monje, Concepcion A.
    Vinagre, Blas M.
    JOURNAL OF PROCESS CONTROL, 2011, 21 (06) : 960 - 966
  • [2] Design of digital Feller fractional order integrator
    Tseng, Chien-Cheng
    Lee, Su-Ling
    SIGNAL PROCESSING, 2014, 102 : 16 - 31
  • [3] New Switched Capacitor Fractional Order Integrator
    Varshney, Pragya
    Gupta, Maneesha
    Visweswaran, G. S.
    JOURNAL OF ACTIVE AND PASSIVE ELECTRONIC DEVICES, 2007, 2 (03): : 187 - 197
  • [4] Transients of fractional-order integrator and derivatives
    Trigeassou, J. C.
    Maamri, N.
    Sabatier, J.
    Oustaloup, A.
    SIGNAL IMAGE AND VIDEO PROCESSING, 2012, 6 (03) : 359 - 372
  • [5] Transients of fractional-order integrator and derivatives
    J. C. Trigeassou
    N. Maamri
    J. Sabatier
    A. Oustaloup
    Signal, Image and Video Processing, 2012, 6 : 359 - 372
  • [6] Discrete Fractional Henon Map Based on Digital Fractional Order Integrator
    Tseng, Chien-Cheng
    Lee, Su-Ling
    2016 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS (APCCAS), 2016, : 595 - 598
  • [7] Design and Implementation of Fractional-Order Microwave Integrator
    Gupta, Mridul
    Upadhyay, Dharmendra Kumar
    RADIOENGINEERING, 2019, 28 (03) : 591 - 597
  • [8] Robust stabilization and control using fractional order integrator
    Ben Hmed, Amina
    Amairi, Messaoud
    Aoun, Mohamed
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2017, 39 (10) : 1559 - 1576
  • [9] Fractional order active disturbance rejection control with the idea of cascaded fractional order integrator equivalence
    Chen, Pengchong
    Luo, Ying
    Zheng, WeiJia
    Gao, Zhiqiang
    Chen, YangQuan
    ISA TRANSACTIONS, 2021, 114 : 359 - 369
  • [10] Performance study of fractional order integrator using single-component fractional order element
    Mondal, D.
    Biswas, K.
    IET CIRCUITS DEVICES & SYSTEMS, 2011, 5 (04) : 334 - 342