Deep learning for electron and scanning probe microscopy: From materials design to atomic fabrication

被引:17
|
作者
Kalinin, Sergei, V [1 ]
Ziatdinov, Maxim [2 ]
Spurgeon, Steven R. [3 ,4 ]
Ophus, Colin [5 ]
Stach, Eric A. [6 ,7 ]
Susi, Toma [8 ]
Agar, Josh [9 ]
Randall, John [10 ]
机构
[1] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[2] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN USA
[3] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA
[4] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[5] Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Mol Foundry, Berkeley, CA USA
[6] Univ Penn, Dept Mat Sci & Engn, 3231 Walnut St, Philadelphia, PA 19104 USA
[7] Univ Penn, Lab Res Struct Matter, Philadelphia, PA 19104 USA
[8] Univ Vienna, Fac Phys, Vienna, Austria
[9] Drexel Univ, Dept Mech Engn & Mech, Philadelphia, PA 19104 USA
[10] Zyvex Labs, Richardson, TX USA
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
ABERRATION CORRECTION; SINGLE ATOMS; SCALE; LITHOGRAPHY; ROBUST;
D O I
10.1557/s43577-022-00413-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Machine learning and artificial intelligence (MUAI) are rapidly becoming an indispensable part of physics research, with applications ranging from theory and materials prediction to high-throughput data analysis. In parallel, the recent successes in applying MUAI methods for autonomous systems from robotics through self-driving cars to organic and inorganic synthesis are generating enthusiasm for the potential of these techniques to enable automated and autonomous experiment in imaging. In this article, we discuss recent progress in application of machine learning methods in scanning transmission electron microscopy and scanning probe microscopy, from applications such as data compression and exploratory data analysis to physics learning to atomic fabrication.
引用
收藏
页码:931 / 939
页数:9
相关论文
共 50 条
  • [1] Deep learning for electron and scanning probe microscopy: From materials design to atomic fabrication
    Sergei V. Kalinin
    Maxim Ziatdinov
    Steven R. Spurgeon
    Colin Ophus
    Eric A. Stach
    Toma Susi
    Josh Agar
    John Randall
    MRS Bulletin, 2022, 47 : 931 - 939
  • [2] Design and fabrication of a strain-type scanning probe for atomic force microscopy
    Cheng, Po-Lun
    Lee, Cheng-Chang
    Hsu, Wensyang
    Journal of the Chinese Society of Mechanical Engineers, Transactions of the Chinese Institute of Engineers, Series C/Chung-Kuo Chi Hsueh Kung Ch'eng Hsuebo Pao, 1999, 20 (01): : 1 - 9
  • [3] Accurate atomic scanning transmission electron microscopy analysis enabled by deep learning
    Chu, Tianshu
    Zhou, Lei
    Zhang, Bowei
    Xuan, Fu-Zhen
    NANO RESEARCH, 2024, 17 (04) : 2971 - 2980
  • [4] Accurate atomic scanning transmission electron microscopy analysis enabled by deep learning
    Tianshu Chu
    Lei Zhou
    Bowei Zhang
    Fu-Zhen Xuan
    Nano Research, 2024, 17 : 2971 - 2980
  • [5] Scanning microscopy technologies: Scanning electron microscopy and scanning probe microscopy
    Nessler, R
    SCANNING, 1999, 21 (02) : 137 - 137
  • [6] AtomAI framework for deep learning analysis of image and spectroscopy data in electron and scanning probe microscopy
    Maxim Ziatdinov
    Ayana Ghosh
    Chun Yin (Tommy) Wong
    Sergei V. Kalinin
    Nature Machine Intelligence, 2022, 4 : 1101 - 1112
  • [7] AtomAI framework for deep learning analysis of image and spectroscopy data in electron and scanning probe microscopy
    Ziatdinov, Maxim
    Ghosh, Ayana
    Wong, Chun Yin
    Kalinin, Sergei V. V.
    NATURE MACHINE INTELLIGENCE, 2022, 4 (12) : 1101 - 1112
  • [8] SCANNING TUNNELING MICROSCOPY, AN ATOMIC PROBE
    BINNIG, G
    ROHRER, H
    SCANNING ELECTRON MICROSCOPY, 1983, : 1079 - 1082
  • [9] Partial Scanning Transmission Electron Microscopy with Deep Learning
    Jeffrey M. Ede
    Richard Beanland
    Scientific Reports, 10
  • [10] Partial Scanning Transmission Electron Microscopy with Deep Learning
    Ede, Jeffrey M.
    Beanland, Richard
    SCIENTIFIC REPORTS, 2020, 10 (01)