Defining relations for quantum symmetric pair coideals of Kac-Moody type

被引:1
|
作者
De Clercq, Hadewijch [1 ]
机构
[1] Univ Ghent, Dept Elect & Informat Syst, Bldg S8,Krijgslaan 281, B-9000 Ghent, Belgium
关键词
Quantum groups; Kac-Moody algebras; quantum symmetric pairs; coideal sub-algebras; q-Onsager algebra; Serre presentation; Dolan-Grady relations; ZONAL SPHERICAL-FUNCTIONS; DOLAN-GRADY RELATIONS; ONSAGER ALGEBRA; AUTOMORPHISMS;
D O I
10.4171/JCA/57
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Classical symmetric pairs consist of a symmetrizable Kac-Moody algebra g, together with its subalgebra of fixed points under an involutive automorphism of the second kind. Quantum group analogs of this construction, known as quantum symmetric pairs, replace the fixed point Lie subalgebras by one-sided coideal subalgebras of the quantized enveloping algebra U-q(g). We provide a complete presentation by generators and relations for these quantum symmetric pair coideal subalgebras. These relations are of inhomogeneous q-Serre type and are valid without restrictions on the generalized Cartan matrix. We draw special attention to the split case, where the quantum symmetric pair coideal subalgebras are generalized q-Onsager algebras.
引用
收藏
页码:297 / 367
页数:71
相关论文
共 50 条
  • [1] Quantum symmetric Kac-Moody pairs
    Kolb, Stefan
    ADVANCES IN MATHEMATICS, 2014, 267 : 395 - 469
  • [2] Hall algebras and quantum symmetric pairs of Kac-Moody type
    Lu, Ming
    Wang, Weiqiang
    ADVANCES IN MATHEMATICS, 2023, 430
  • [3] Hall Algebras and Quantum Symmetric Pairs of Kac-Moody Type Ⅱ
    Ming LU
    Run Ze SHANG
    Acta Mathematica Sinica,English Series, 2024, (03) : 806 - 822
  • [4] Hall Algebras and Quantum Symmetric Pairs of Kac-Moody Type II
    Lu, Ming
    Shang, Run Ze
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2024, 40 (03) : 806 - 822
  • [5] Kac-Moody symmetric spaces
    Freyn, Walter
    Hartnick, Tobias
    Horn, Max
    Koehl, Ralf
    MUENSTER JOURNAL OF MATHEMATICS, 2020, 13 (01): : 1 - 114
  • [6] Toward symmetric spaces of affine Kac-Moody type
    Heintze, Ernst
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (5-6) : 881 - 898
  • [7] Canonical bases arising from quantum symmetric pairs of Kac-Moody type
    Bao, Huanchen
    Wang, Weiqiang
    COMPOSITIO MATHEMATICA, 2021, 157 (07) : 1507 - 1537
  • [9] Supercategorification of quantum Kac-Moody algebras
    Kang, Seok-Jin
    Kashiwara, Masaki
    Oh, Se-jin
    ADVANCES IN MATHEMATICS, 2013, 242 : 116 - 162
  • [10] CATEGORIFICATION OF QUANTUM KAC-MOODY SUPERALGEBRAS
    Hill, David
    Wang, Weiqiang
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (02) : 1183 - 1216