共 50 条
Defining relations for quantum symmetric pair coideals of Kac-Moody type
被引:1
|作者:
De Clercq, Hadewijch
[1
]
机构:
[1] Univ Ghent, Dept Elect & Informat Syst, Bldg S8,Krijgslaan 281, B-9000 Ghent, Belgium
关键词:
Quantum groups;
Kac-Moody algebras;
quantum symmetric pairs;
coideal sub-algebras;
q-Onsager algebra;
Serre presentation;
Dolan-Grady relations;
ZONAL SPHERICAL-FUNCTIONS;
DOLAN-GRADY RELATIONS;
ONSAGER ALGEBRA;
AUTOMORPHISMS;
D O I:
10.4171/JCA/57
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Classical symmetric pairs consist of a symmetrizable Kac-Moody algebra g, together with its subalgebra of fixed points under an involutive automorphism of the second kind. Quantum group analogs of this construction, known as quantum symmetric pairs, replace the fixed point Lie subalgebras by one-sided coideal subalgebras of the quantized enveloping algebra U-q(g). We provide a complete presentation by generators and relations for these quantum symmetric pair coideal subalgebras. These relations are of inhomogeneous q-Serre type and are valid without restrictions on the generalized Cartan matrix. We draw special attention to the split case, where the quantum symmetric pair coideal subalgebras are generalized q-Onsager algebras.
引用
收藏
页码:297 / 367
页数:71
相关论文