HfO2-Based OxRAM Devices as Synapses for Convolutional Neural Networks

被引:160
|
作者
Garbin, Daniele [1 ,2 ]
Vianello, Elisa [1 ,2 ]
Bichler, Olivier [3 ]
Rafhay, Quentin [4 ]
Gamrat, Christian [3 ]
Ghibaudo, Gerard [4 ]
DeSalvo, Barbara [1 ,2 ]
Perniola, Luca [1 ,2 ]
机构
[1] Univ Grenoble Alpes, F-38000 Grenoble, France
[2] Commissariat Energie Atom & Energies Alternat CEA, LETI, F-38054 Grenoble, France
[3] CEA, Lab Integrat Syst & Technol, F-91191 Gif Sur Yvette, France
[4] Inst Microelect Electromagnetisme & Photon, Lab Hyperfrequences & Caracterisat, F-38016 Grenoble, France
关键词
Convolutional neural network (CNN); resistive RAM (RRAM) synapse; spike timing-dependent plasticity (STDP); stochastic neuromorphic system; visual pattern extraction;
D O I
10.1109/TED.2015.2440102
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, the use of HfO2-based oxide-based resistive memory (OxRAM) devices operated in binary mode to implement synapses in a convolutional neural network (CNN) is studied. We employed an artificial synapse composed of multiple OxRAM cells connected in parallel, thereby providing synaptic efficacies. Electrical characterization results show that the proposed HfO2-based OxRAM technology offers good electrical properties in terms of endurance (>10(8) cycles), speed (<10 ns), and low energy (<10 pJ), and thus being well suited for neuromorphic applications. A device physical model is developed in order to study the variability of the resistance as a function of the stochastic position of oxygen vacancies in 3-D. Finally, the proposed binary OxRAM synapse has been used for CNN system-level simulations. High accuracy (recognition rate >98%) is demonstrated for a complex visual pattern recognition application. We demonstrated that the resistance variability and the reduced memory window of the OxRAM cells when operated at extremely low programming conditions (<10 pJ per switching event) have a small impact on the performances of proposed OxRAM-based CNN (recognition rate 94%).
引用
收藏
页码:2494 / 2501
页数:8
相关论文
共 50 条
  • [1] On the Impact of OxRAM-based Synapses Variability on Convolutional Neural Networks Performance
    Garbin, D.
    Vianello, E.
    Bichler, O.
    Azzaz, M.
    Rafhay, Q.
    Candelier, P.
    Gamrat, C.
    Ghibaudo, G.
    DeSalvo, B.
    Pemiola, L.
    PROCEEDINGS OF THE 2015 IEEE/ACM INTERNATIONAL SYMPOSIUM ON NANOSCALE ARCHITECTURES (NANOARCH 15), 2015, : 193 - 198
  • [2] Investigation of Cycle-to-Cycle Variability in HfO2-Based OxRAM
    Piccolboni, Giuseppe
    Molas, Gabriel
    Garbin, Daniele
    Vianello, Elisa
    Cueto, Olga
    Cagli, Carlo
    Traore, Boubacar
    De Salvo, Barbara
    Ghibaudo, Gerard
    Perniola, Luca
    IEEE ELECTRON DEVICE LETTERS, 2016, 37 (06) : 721 - 723
  • [3] Crossbar Nanoscale HfO2-Based Electronic Synapses
    Yury Matveyev
    Roman Kirtaev
    Alena Fetisova
    Sergey Zakharchenko
    Dmitry Negrov
    Andrey Zenkevich
    Nanoscale Research Letters, 2016, 11
  • [4] Crossbar Nanoscale HfO2-Based Electronic Synapses
    Matveyev, Yury
    Kirtaev, Roman
    Fetisova, Alena
    Zakharchenko, Sergey
    Negrov, Dmitry
    Zenkevich, Andrey
    NANOSCALE RESEARCH LETTERS, 2016, 11
  • [5] A Practical HfO2-based OxRAM Memristor Model Suitable for Circuit Design and Simulation
    Mbarek, Khaoula
    Ouaja Rziga, Faten
    Ghedira, Sami
    Besbes, Kamel
    2019 IEEE INTERNATIONAL CONFERENCE ON DESIGN & TEST OF INTEGRATED MICRO & NANO-SYSTEMS (DTS), 2019,
  • [6] Thermal Laser Attack and High Temperature Heating on HfO2-based OxRAM Cells
    Krakovinsky, A.
    Bocquet, M.
    Wacquez, R.
    Section, J. Coignus
    Portal, J-M.
    2017 IEEE 23RD INTERNATIONAL SYMPOSIUM ON ON-LINE TESTING AND ROBUST SYSTEM DESIGN (IOLTS), 2017, : 85 - 89
  • [7] Resistance switching in HfO2-based OxRRAM devices
    Calka, P.
    Martinez, E.
    Lafond, D.
    Dansas, H.
    Tirano, S.
    Jousseaume, V.
    Bertin, F.
    Guedj, C.
    MICROELECTRONIC ENGINEERING, 2011, 88 (07) : 1140 - 1142
  • [8] Variability-tolerant Convolutional Neural Network for Pattern Recognition Applications based on OxRAM Synapses
    Garbin, D.
    Bichler, O.
    Vianello, E.
    Rafhay, Q.
    Gamrat, C.
    Perniola, L.
    Ghibaudo, G.
    DeSalvo, B.
    2014 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2014,
  • [9] Heavy Ion Irradiation Hardening Study on 4kb arrays HfO2-based OxRAM
    Guillaume, N.
    Lefevre, G.
    Charpin-Nicolle, C.
    Grenouillet, L.
    Vogel, T.
    Kaiser, N.
    Piros, E.
    Petzold, S.
    Trautmann, C.
    Sylvain, D.
    Vallee, C.
    Alff, L.
    Nowak, E.
    2020 20TH EUROPEAN CONFERENCE ON RADIATION AND ITS EFFECTS ON COMPONENTS AND SYSTEMS (RADECS 2020), 2022, : 22 - 27
  • [10] Multilevel HfO2-based RRAM devices for low-power neuromorphic networks
    Milo, V.
    Zambelli, C.
    Olivo, P.
    Perez, E.
    Mahadevaiah, M. K.
    Ossorio, O. G.
    Wenger, Ch.
    Ielmini, D.
    APL MATERIALS, 2019, 7 (08)