Punctual Hilbert schemes for Kleinian singularities as quiver varieties

被引:4
|
作者
Craw, Alastair [1 ]
Gammelgaard, Soren [2 ]
Gyenge, Adam [3 ]
Szendroi, Balazs [2 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[2] Univ Oxford, Math Inst, Oxford OX2 6GG, England
[3] Alfred Renyi Inst Math, Realtanoda Utca 13-15, H-1053 Budapest, Hungary
来源
ALGEBRAIC GEOMETRY | 2021年 / 8卷 / 06期
基金
英国工程与自然科学研究理事会;
关键词
Hilbert scheme of points; quiver variety; Kleinian singularity; preprojective algebra; cornered algebra; REPRESENTATIONS; INSTANTONS;
D O I
10.14231/AG-2021-021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a finite subgroup Gamma subset of SL(2, C) and n >= 1, we construct the (reduced scheme underlying the) Hilbert scheme of n points on the Kleinian singularity C-2/Gamma as a Nakajima quiver variety for the framed McKay quiver of Gamma, taken at a specific non-generic stability parameter. We deduce that this Hilbert scheme is irreducible (a result previously due to Zheng), normal and admits a unique symplectic resolution. More generally, we introduce a class of algebras obtained from the preprojective algebra of the framed McKay quiver by removing an arrow and then 'cornering', and we show that fine moduli spaces of cyclic modules over these new algebras are isomorphic to quiver varieties for the framed McKay quiver and certain non-generic choices of the stability parameter.
引用
收藏
页码:680 / 704
页数:25
相关论文
共 50 条