Action Recognition using the Rf Transform on Optical Flow Images

被引:1
|
作者
Maria Carmona, Josep [1 ]
Climent, Joan [1 ]
机构
[1] Barcelona Tech UPC, Barcelona, Spain
基金
欧盟地平线“2020”;
关键词
R Transform; Action Recognition; PHOW; Projection Templates;
D O I
10.5220/0006218002660271
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The objective of this paper is the automatic recognition of human actions in video sequences. The use of spatio-temporal features for action recognition has become very popular in recent literature. Instead of extracting the spatio-temporal features from the raw video sequence, some authors propose to project the sequence to a single template first. As a contribution we propose the use of several variants of the R transform for projecting the image sequences to templates. The R transform projects the whole sequence to a single image, retaining information concerning movement direction and magnitude. Spatio-temporal features are extracted from the template, they are combined using a bag of words paradigm, and finally fed to a SVM for action classification. The method presented is shown to improve the state-of-art results on the standard Weizmann action dataset.
引用
收藏
页码:266 / 271
页数:6
相关论文
共 50 条
  • [1] Using Phase Instead of Optical Flow for Action Recognition
    Hommos, Omar
    Pintea, Silvia L.
    Mettes, Pascal S. M.
    van Gemert, Jan C.
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT VI, 2019, 11134 : 678 - 691
  • [2] Optical flow estimation in cardiac CT images using the steered Hermite transform
    Moya-Albor, Ernesto
    Escalante-Ramirez, Boris
    Vallejo, Enrique
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2013, 28 (03) : 267 - 291
  • [3] Human Action Recognition Using Optical Flow and Convolutional Neural Networks
    Wrzalik, Marco
    Krechel, Dirk
    2017 16TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2017, : 801 - 805
  • [4] Human Action Recognition Using Optical Flow Accumulated Local Histograms
    Lucena, Manuel
    Perez de la Blanca, Nicolas
    Manuel Fuertes, Jose
    Jesus Marin-Jimenez, Manuel
    PATTERN RECOGNITION AND IMAGE ANALYSIS, PROCEEDINGS, 2009, 5524 : 32 - +
  • [5] On the Combination of IMU and Optical Flow for Action Recognition
    Alhersh, Taha
    Stuckenschmidt, Heiner
    2019 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS WORKSHOPS (PERCOM WORKSHOPS), 2019, : 17 - 21
  • [6] RALACs: Action Recognition in Autonomous Vehicles Using Interaction Encoding and Optical Flow
    Zhou, Eddy
    Leather, Owen
    Zhuang, Alex
    Budhwani, Alikasim
    Dempster, Rowan
    Li, Quanquan
    Al-Sharman, Mohammad
    Rayside, Derek
    Melek, William
    IEEE TRANSACTIONS ON CYBERNETICS, 2025, 55 (02) : 512 - 525
  • [7] Motion Clustering-based Action Recognition Technique Using Optical Flow
    Mahbub, Upal
    Imtiaz, Hafiz
    Ahad, Md. Atiqur Rahman
    2012 INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION (ICIEV), 2012, : 919 - 924
  • [8] HMM based action recognition using oriented histograms of optical flow field
    Li, X.
    ELECTRONICS LETTERS, 2007, 43 (10) : 560 - 561
  • [9] 3D Optical Flow Estimation in Cardiac CT Images using the Hermite transform
    Moya-Albor, Ernesto
    Mira, Carlos
    Brieva, Jorge
    Escalante-Ramirez, Boris
    Vallejo Venegas, Enrique
    12TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION PROCESSING AND ANALYSIS, 2017, 10160
  • [10] OFPI: Optical Flow Pose Image for Action Recognition
    Chen, Dong
    Zhang, Tao
    Zhou, Peng
    Yan, Chenyang
    Li, Chuanqi
    MATHEMATICS, 2023, 11 (06)