Permutation operators, entanglement entropy, and the XXZ spin chain in the limit Δ →-1+

被引:30
|
作者
Castro-Alvaredo, Olalla A. [1 ]
Doyon, Benjamin [2 ]
机构
[1] City Univ London, Ctr Math Sci, London EC1V 0HB, England
[2] Kings Coll London, Dept Math, Strand, London WC2R 2LS, England
关键词
correlation functions; integrable spin chains (vertex models); entanglement in extended quantum systems (theory); FORM-FACTORS; MODEL;
D O I
10.1088/1742-5468/2011/02/P02001
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper we develop a new approach to the investigation of the bi-partite entanglement entropy in integrable quantum spin chains. Our method employs the well-known replica trick, thus taking a replica version of the spin chain model as starting point. At each site i of this new model we construct an operator T-i which acts as a cyclic permutation among the n replicas of the model. Infinite products of T-i give rise to local operators, precursors of branch-point twist fields of quantum field theory. The entanglement entropy is then expressed in terms of correlation functions of such operators. Employing this approach we investigate the von Neumann and Renyi entropies of a particularly interesting quantum state occurring as a limit (in a compact convergence topology) of the antiferromagnetic XXZ quantum spin chain. We find that, for large sizes, the entropy scales logarithmically, but not conformally.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] Entanglement entropy bounds in the higher spin XXZ chain
    Fischbacher, Christoph
    Ogunkoya, Oluwadara
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (10) : 1ENG
  • [2] Bounds on the entanglement entropy of droplet states in the XXZ spin chain
    Beaud, V.
    Warzel, S.
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (01)
  • [3] Entanglement entropy scaling of the XXZ chain
    Chen, Pochung
    Xue, Zhi-long
    McCulloch, I. P.
    Chung, Ming-Chiang
    Cazalilla, Miguel
    Yip, S-K
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
  • [4] Density matrix elements and entanglement entropy for the spin-1/2 XXZ chain at Δ=1/2
    Sato, Jun
    Shiroishi, Masahiro
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (30) : 8739 - 8749
  • [5] Entanglement Bounds in the XXZ Quantum Spin Chain
    H. Abdul-Rahman
    C. Fischbacher
    G. Stolz
    Annales Henri Poincaré, 2020, 21 : 2327 - 2366
  • [6] Entanglement asymmetry in the critical XXZ spin chain
    Lastres, Marco
    Murciano, Sara
    Ares, Filiberto
    Calabrese, Pasquale
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2025, 2025 (01):
  • [7] Entanglement Bounds in the XXZ Quantum Spin Chain
    Abdul-Rahman, H.
    Fischbacher, C.
    Stolz, G.
    ANNALES HENRI POINCARE, 2020, 21 (07): : 2327 - 2366
  • [8] Lower Bound to the Entanglement Entropy of the XXZ Spin Ring
    Fischbacher, Christoph
    Schulte, Ruth
    ANNALES HENRI POINCARE, 2023, 24 (11): : 3967 - 4012
  • [9] Lower Bound to the Entanglement Entropy of the XXZ Spin Ring
    Christoph Fischbacher
    Ruth Schulte
    Annales Henri Poincaré, 2023, 24 : 3967 - 4012
  • [10] Exactly conserved quasilocal operators for the XXZ spin chain
    Pereira, R. G.
    Pasquier, V.
    Sirker, J.
    Affleck, I.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,