SCH-GAN: Semi-Supervised Cross-Modal Hashing by Generative Adversarial Network

被引:92
|
作者
Zhang, Jian [1 ]
Peng, Yuxin [1 ]
Yuan, Mingkuan [1 ]
机构
[1] Peking Univ, Inst Comp Sci & Technol, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Semantics; Data models; Correlation; Generative adversarial networks; Training data; Predictive models; Gallium nitride; Cross-modal hashing; generative adversarial network (GAN); semi-supervised; CODES;
D O I
10.1109/TCYB.2018.2868826
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cross-modal hashing maps heterogeneous multimedia data into a common Hamming space to realize fast and flexible cross-modal retrieval. Supervised cross-modal hashing methods have achieved considerable progress by incorporating semantic side information. However, they heavily rely on large-scale labeled cross-modal training data which are hard to obtain, since multiple modalities are involved. They also ignore the rich information contained in the large amount of unlabeled data across different modalities, which can help to model the correlations between different modalities. To address these problems, in this paper, we propose a novel semi-supervised cross-modal hashing approach by generative adversarial network (SCH-GAN). The main contributions can be summarized as follows: 1) we propose a novel generative adversarial network for cross-modal hashing, in which the generative model tries to select margin examples of one modality from unlabeled data when given a query of another modality (e.g., giving a text query to retrieve images and vice versa). The discriminative model tries to distinguish the selected examples and true positive examples of the query. These two models play a minimax game so that the generative model can promote the hashing performance of the discriminative model and 2) we propose a reinforcement learning-based algorithm to drive the training of proposed SCH-GAN. The generative model takes the correlation score predicted by discriminative model as a reward, and tries to select the examples close to the margin to promote a discriminative model. Extensive experiments verify the effectiveness of our proposed approach, compared with nine state-of-the-art methods on three widely used datasets.
引用
收藏
页码:489 / 502
页数:14
相关论文
共 50 条
  • [1] Semi-supervised cross-modal image generation with generative adversarial networks
    Li, Dan
    Du, Changde
    He, Huiguang
    PATTERN RECOGNITION, 2020, 100
  • [2] Semi-Supervised Semi-Paired Cross-Modal Hashing
    Zhang, Xuening
    Liu, Xingbo
    Nie, Xiushan
    Kang, Xiao
    Yin, Yilong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (07) : 6517 - 6529
  • [3] Semi-Supervised Knowledge Distillation for Cross-Modal Hashing
    Su, Mingyue
    Gu, Guanghua
    Ren, Xianlong
    Fu, Hao
    Zhao, Yao
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 662 - 675
  • [4] SEMANTIC PRESERVING GENERATIVE ADVERSARIAL NETWORK FOR CROSS-MODAL HASHING
    Wu, Fei
    Luo, Xiaokai
    Huang, Qinghua
    Wei, Pengfei
    Sun, Ying
    Dong, Xiwei
    Wu, Zhiyong
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 2743 - 2747
  • [5] Semi-supervised discrete hashing for efficient cross-modal retrieval
    Xingzhi Wang
    Xin Liu
    Shu-Juan Peng
    Bineng Zhong
    Yewang Chen
    Ji-Xiang Du
    Multimedia Tools and Applications, 2020, 79 : 25335 - 25356
  • [6] Semi-supervised discrete hashing for efficient cross-modal retrieval
    Wang, Xingzhi
    Liu, Xin
    Peng, Shu-Juan
    Zhong, Bineng
    Chen, Yewang
    Du, Ji-Xiang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (35-36) : 25335 - 25356
  • [7] Proxy-Based Semi-Supervised Cross-Modal Hashing
    Chen, Hao
    Zou, Zhuoyang
    Zhu, Xinghui
    APPLIED SCIENCES-BASEL, 2025, 15 (05):
  • [8] Semi-supervised cross-modal hashing with joint hyperboloid mapping
    Fu, Hao
    Gu, Guanghua
    Dou, Yiyang
    Li, Zhuoyi
    Zhao, Yao
    KNOWLEDGE-BASED SYSTEMS, 2024, 304
  • [9] Semi-supervised Cross-Modal Hashing with Graph Convolutional Networks
    Duan, Jiasheng
    Luo, Yadan
    Wang, Ziwei
    Huang, Zi
    DATABASES THEORY AND APPLICATIONS, ADC 2020, 2020, 12008 : 93 - 104
  • [10] Unsupervised Generative Adversarial Cross-Modal Hashing
    Zhang, Jian
    Peng, Yuxin
    Yuan, Mingkuan
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 539 - 546