LEVERAGING EVALUATION METRIC-RELATED TRAINING CRITERIA FOR SPEECH SUMMARIZATION

被引:5
|
作者
Lin, Shih-Hsiang [1 ]
Chang, Yu-Mei [1 ]
Liu, Jia-Wen [1 ]
Chen, Berlin [1 ]
机构
[1] Natl Taiwan Normal Univ, Taipei, Taiwan
关键词
speech summarization; sentence-classification; imbalanced-data; ranking capability; evaluation metric;
D O I
10.1109/ICASSP.2010.5494956
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Many of the existing machine-learning approaches to speech summarization cast important sentence selection as a two-class classification problem and have shown empirical success for a wide variety of summarization tasks. However, the imbalanced-data problem sometimes results in a trained speech summarizer with unsatisfactory performance. On the other hand, training the summarizer by improving the associated classification accuracy does not always lead to better summarization evaluation performance. In view of such phenomena, we hence investigate two different training criteria to alleviate the negative effects caused by them, as well as to boost the summarizer's performance. One is to learn the classification capability of a summarizer on the basis of the pair-wise ordering information of sentences in a training document according to a degree of importance. The other is to train the summarizer by directly maximizing the associated evaluation score. Experimental results on the broadcast news summarization task show that these two training criteria can give substantial improvements over the baseline SVM summarization system.
引用
收藏
页码:5314 / 5317
页数:4
相关论文
共 50 条
  • [1] Extractive speech summarization using evaluation metric-related training criteria
    Chen, Berlin
    Lin, Shih-Hsiang
    Chang, Yu-Mei
    Liu, Jia-Wen
    INFORMATION PROCESSING & MANAGEMENT, 2013, 49 (01) : 1 - 12
  • [2] Understanding metric-related pitfalls in image analysis validation
    Annika Reinke
    Minu D. Tizabi
    Michael Baumgartner
    Matthias Eisenmann
    Doreen Heckmann-Nötzel
    A. Emre Kavur
    Tim Rädsch
    Carole H. Sudre
    Laura Acion
    Michela Antonelli
    Tal Arbel
    Spyridon Bakas
    Arriel Benis
    Florian Buettner
    M. Jorge Cardoso
    Veronika Cheplygina
    Jianxu Chen
    Evangelia Christodoulou
    Beth A. Cimini
    Keyvan Farahani
    Luciana Ferrer
    Adrian Galdran
    Bram van Ginneken
    Ben Glocker
    Patrick Godau
    Daniel A. Hashimoto
    Michael M. Hoffman
    Merel Huisman
    Fabian Isensee
    Pierre Jannin
    Charles E. Kahn
    Dagmar Kainmueller
    Bernhard Kainz
    Alexandros Karargyris
    Jens Kleesiek
    Florian Kofler
    Thijs Kooi
    Annette Kopp-Schneider
    Michal Kozubek
    Anna Kreshuk
    Tahsin Kurc
    Bennett A. Landman
    Geert Litjens
    Amin Madani
    Klaus Maier-Hein
    Anne L. Martel
    Erik Meijering
    Bjoern Menze
    Karel G. M. Moons
    Henning Müller
    Nature Methods, 2024, 21 : 182 - 194
  • [3] Understanding metric-related pitfalls in image analysis validation
    Reinke, Annika
    Tizabi, Minu D.
    Baumgartner, Michael
    Eisenmann, Matthias
    Heckmann-Noetzel, Doreen
    Kavur, A. Emre
    Raedsch, Tim
    Sudre, Carole H.
    Acion, Laura
    Antonelli, Michela
    Arbel, Tal
    Bakas, Spyridon
    Benis, Arriel
    Buettner, Florian
    Cardoso, M. Jorge
    Cheplygina, Veronika
    Chen, Jianxu
    Christodoulou, Evangelia
    Cimini, Beth A.
    Farahani, Keyvan
    Ferrer, Luciana
    Galdran, Adrian
    van Ginneken, Bram
    Glocker, Ben
    Godau, Patrick
    Hashimoto, Daniel A.
    Hoffman, Michael M.
    Huisman, Merel
    Isensee, Fabian
    Jannin, Pierre
    Kahn, Charles E.
    Kainmueller, Dagmar
    Kainz, Bernhard
    Karargyris, Alexandros
    Kleesiek, Jens
    Kofler, Florian
    Kooi, Thijs
    Kopp-Schneider, Annette
    Kozubek, Michal
    Kreshuk, Anna
    Kurc, Tahsin
    Landman, Bennett A.
    Litjens, Geert
    Madani, Amin
    Maier-Hein, Klaus
    Martel, Anne L.
    Meijering, Erik
    Menze, Bjoern
    Moons, Karel G. M.
    Mueller, Henning
    NATURE METHODS, 2024, 21 (02) : 182 - 194
  • [4] Beyond ROUGE: A Comprehensive Evaluation Metric for Abstractive Summarization Leveraging Similarity, Entailment, and Acceptability
    Briman, Mohammed Khalid Hilmi
    Yildiz, Beytullah
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2024, 33 (05)
  • [5] EXTRACTIVE SPEECH SUMMARIZATION LEVERAGING CONVOLUTIONAL NEURAL NETWORK TECHNIQUES
    Tsai, Chun-I
    Hung, Hsiao-Tsung
    Chen, Kuan-Yu
    Chen, Berlin
    2016 IEEE WORKSHOP ON SPOKEN LANGUAGE TECHNOLOGY (SLT 2016), 2016, : 158 - 164
  • [6] RISE: Leveraging Retrieval Techniques for Summarization Evaluation
    Uthus, David
    Ni, Jianmo
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023), 2023, : 13697 - 13709
  • [7] Summarization Evaluation for Text and Speech: Issues and Approaches
    Nenkova, Ani
    INTERSPEECH 2006 AND 9TH INTERNATIONAL CONFERENCE ON SPOKEN LANGUAGE PROCESSING, VOLS 1-5, 2006, : 1527 - 1530
  • [8] ECOLOGICAL VALIDITY AND THE EVALUATION OF SPEECH SUMMARIZATION QUALITY
    McCallum, Anthony
    Penn, Gerald
    Munteanu, Cosmin
    Zhu, Xiaodan
    2012 IEEE WORKSHOP ON SPOKEN LANGUAGE TECHNOLOGY (SLT 2012), 2012, : 467 - 472
  • [9] Segment-Less Continuous Speech Separation of Meetings: Training and Evaluation Criteria
    Neumann, Thilo von
    Kinoshita, Keisuke
    Boeddeker, Christoph
    Delcroix, Marc
    Haeb-Umbach, Reinhold
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2023, 31 : 576 - 589
  • [10] Question Answering as an Automatic Evaluation Metric for News Article Summarization
    Eyal, Matan
    Baumel, Tal
    Elhadad, Michael
    2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, 2019, : 3938 - 3948