Magnetic actuation and feedback cooling of a cavity optomechanical torque sensor

被引:30
|
作者
Kim, P. H. [1 ]
Hauer, B. D. [1 ]
Clark, T. J. [1 ]
Sani, F. Fani [1 ]
Freeman, M. R. [1 ]
Davis, J. P. [1 ]
机构
[1] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E9, Canada
来源
NATURE COMMUNICATIONS | 2017年 / 8卷
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
QUANTUM GROUND-STATE; OSCILLATOR; ANISOTROPY;
D O I
10.1038/s41467-017-01380-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cavity optomechanics has demonstrated remarkable capabilities, such as measurement and control of mechanical motion at the quantum level. Yet many compelling applications of optomechanics-such as microwave-to-telecom wavelength conversion, quantum memories, materials studies, and sensing applications-require hybrid devices, where the optomechanical system is coupled to a separate, typically condensed matter, system. Here, we demonstrate such a hybrid optomechanical system, in which a mesoscopic ferromagnetic needle is integrated with an optomechanical torsional resonator. Using this system we quantitatively extract the magnetization of the needle, not known a priori, demonstrating the potential of this system for studies of nanomagnetism. Furthermore, we show that we can magnetically dampen its torsional mode from room-temperature to 11.6 K-improving its mechanical response time without sacrificing torque sensitivity. Future extensions will enable studies of high-frequency spin dynamics and broadband wavelength conversion via torque mixing.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Magnetic actuation and feedback cooling of a cavity optomechanical torque sensor
    P. H. Kim
    B. D. Hauer
    T. J. Clark
    F. Fani Sani
    M. R. Freeman
    J. P. Davis
    Nature Communications, 8
  • [2] Two-axis cavity optomechanical torque characterization of magnetic microstructures
    Hajisalem, G.
    Losby, J. E.
    Luiz, G. de Oliveira
    Sauer, V. T. K.
    Barclay, P. E.
    Freeman, M. R.
    NEW JOURNAL OF PHYSICS, 2019, 21 (09):
  • [3] Fast cavity optomechanical cooling
    Stefanatos, Dionisis
    AUTOMATICA, 2016, 73 : 71 - 75
  • [4] Review of cavity optomechanical cooling
    刘永椿
    胡毓文
    黄智维
    肖云峰
    Chinese Physics B, 2013, 22 (11) : 105 - 117
  • [5] Review of cavity optomechanical cooling
    Liu Yong-Chun
    Hu Yu-Wen
    Wei, Wong Chee
    Xiao Yun-Feng
    CHINESE PHYSICS B, 2013, 22 (11)
  • [6] Optomechanical Cavity Cooling of an Atomic Ensemble
    Schleier-Smith, Monika H.
    Leroux, Ian D.
    Zhang, Hao
    Van Camp, Mackenzie A.
    Vuletic, Vladan
    PHYSICAL REVIEW LETTERS, 2011, 107 (14)
  • [7] cooling to heating transition in an optomechanical cavity
    Suchoi, Oren
    Shlomi, Keren
    Ella, Lior
    Buks, Eyal
    2015 INTERNATIONAL CONFERENCE ON OPTICAL MEMS AND NANOPHOTONICS (OMN), 2015,
  • [8] Cooling in a parametrically driven optomechanical cavity
    Yanes-Thomas, Pablo
    Barberis-Blostein, Pablo
    Bienert, Marc
    PHYSICAL REVIEW A, 2020, 102 (01)
  • [9] Decoherence suppression by cavity optomechanical cooling
    Buks, Eyal
    COMPTES RENDUS PHYSIQUE, 2012, 13 (05) : 454 - 469
  • [10] Cooling of Optomechanical System by Coherent Feedback
    Yang, N.
    Zhang, J.
    Liu, Z. P.
    Li, C. W.
    Tarn, T. J.
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 2103 - 2107