Prussian Blue Analogues as Promising Thermal Power Generation Materials

被引:22
|
作者
Fukuzumi, Yuya [1 ]
Amaha, Kaoru [1 ]
Kobayashi, Wataru [1 ]
Niwa, Hideharu [1 ]
Mortitomo, Yutaka [1 ]
机构
[1] Univ Tsukuba, Grad Sch Pure & Appl Sci, Fac Pure & Appl Sci, Tsukuba Res Ctr Energy Mat Sci TREMS, Tsukuba, Ibaraki 3058571, Japan
关键词
thermal power generation; thermal coefficient of redox potential; Prussian blue analogues; 3-DIMENSIONAL VISUALIZATION; CATHODE MATERIALS; SODIUM; FRAMEWORK;
D O I
10.1002/ente.201700952
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The thermal coefficient (alpha=dV/dT) of redox potential (V) enables an efficient thermal power generation using waste heat. Actually, a battery-type thermocell, which consists of two kinds of redoxable solids with different alpha as anode and cathode, is demonstrated to produce electric energy in thermal cycles. To fabricate high performance device, alpha is systematically investigated in three kinds of Prussian blue analogues (PBAs), NaxCo[Fe(CN)(6)](0.71) (abbreviated as NCF71), NaxCo[Fe(CN)(6)](0.90) (NCF90) and NaxMn[Fe(CN)(6)](0.83) (NMF83), against the Na+ concentration (x). NCF90 shows the highest positive alpha (=1.4 mV K-1) in the lower-lying plateau while NMF83 shows the highest negative alpha (=-0.4 mV K-1) in the lower-lying plateau. In addition, the NCF90/NMF83 thermocell produces 5.5 meV/NCF90 in the initial cycle between T-L (=286 K) and T-H (=313 K). The thermal efficiency (eta=2.3 %) reaches 27 % of the Carnot efficiency (eta(carnot)=8.7 %). Thus, PBAs are promising materials for thermal power generation.
引用
收藏
页码:1865 / 1870
页数:6
相关论文
共 50 条
  • [1] Recent advances in Prussian blue and Prussian blue analogues: synthesis and thermal treatments
    Zakaria, Mohamed B.
    Chikyow, Toyohiro
    COORDINATION CHEMISTRY REVIEWS, 2017, 352 : 328 - 345
  • [2] Understanding the thermal conversion of Prussian blue analogues
    Nguyen, Edward
    Hardy, David
    Strouse, Geoffrey
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [3] Zero thermal expansion in Prussian blue analogues.
    Prassides, K
    Margadonna, S
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 229 : U1080 - U1080
  • [4] Thermal efficiency of a thermocell made of Prussian blue analogues
    Shibata, Takayuki
    Fukuzumi, Yuya
    Moritomo, Yutaka
    SCIENTIFIC REPORTS, 2018, 8
  • [5] Thermal efficiency of a thermocell made of Prussian blue analogues
    Takayuki Shibata
    Yuya Fukuzumi
    Yutaka Moritomo
    Scientific Reports, 8
  • [6] Nanoarchitectonics: A New Materials Horizon for Prussian Blue and Its Analogues
    Azhar, Alowasheeir
    Li, Yucen
    Cai, Zexing
    Zakaria, Mohamed Barakat
    Masud, Mostafa Kamal
    Hossain, Md Shahriar A.
    Kim, Jeonghun
    Zhang, Wei
    Na, Jongbeom
    Yamauchi, Yusuke
    Hu, Ming
    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 2019, 92 (04) : 875 - 904
  • [7] Energy storage materials derived from Prussian blue analogues
    Ma, Feng
    Li, Qing
    Wang, Tanyuan
    Zhang, Hanguang
    Wu, Gang
    SCIENCE BULLETIN, 2017, 62 (05) : 358 - 368
  • [8] Energy storage materials derived from Prussian blue analogues
    Feng Ma
    Qing Li
    Tanyuan Wang
    Hanguang Zhang
    Gang Wu
    ScienceBulletin, 2017, 62 (05) : 358 - 368
  • [9] Thermal decomposition of Prussian blue analogues in various gaseous media
    D. P. Domonov
    S. I. Pechenyuk
    Yu. P. Semushina
    Journal of Thermal Analysis and Calorimetry, 2021, 146 : 629 - 635
  • [10] Thermal decomposition of Prussian blue analogues in various gaseous media
    Domonov, D. P.
    Pechenyuk, S. I.
    Semushina, Yu. P.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2021, 146 (02) : 629 - 635