Topologic distance in the Lucena network

被引:1
|
作者
Moreira, Darlan A. [1 ]
Corso, Gilberto [2 ]
机构
[1] Univ Fed Rio Grande do Norte, Escola Ciencias & Tecnol, Campus Cent, BR-59078970 Natal, RN, Brazil
[2] Univ Fed Rio Grande do Norte, Ctr Biociencias, Dept Biofis & Farmacol, BR-59072970 Natal, RN, Brazil
来源
EUROPEAN PHYSICAL JOURNAL B | 2016年 / 89卷 / 05期
关键词
SMALL-WORLD; PERCOLATION;
D O I
10.1140/epjb/e2016-60669-6
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The Lucena network (LN) is the dual of a multifractal partition of the square. We analyze the relation between the typical topologic distance l and the number of vertices N of the LN. The multifractal partition has one parameter rho which controls the geometrical asymmetry of the multifractal. In the limit of rho -> 1 the blocks of the partition are squared, the connections amont the blocks are short range, the LN is more regular and the relation l proportional to root N is observed. For the limit rho -> 0 the blocks are strongly asymmetric, long range connections appear, and the topologic distance follows l proportional to (log N)(alpha), a weak small world phenomenon. For any network size we calculate analytically the size of the minimum distance l(min) (rho -> 0) and the maximal distance l(max) (rho -> 1). The distance in the weak small world regime is calculated using the number of vertices inside a radius of length l and taking into account the network average connectivity and the exponent alpha.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Topologic distance in the Lucena network
    Darlan A. Moreira
    Gilberto Corso
    The European Physical Journal B, 2016, 89
  • [2] General topologic environment of the Russian railway network
    Tikhomirov, A.
    Rossodivita, A.
    Kinash, N.
    Trufanov, A.
    Berestneva, O.
    INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGIES IN BUSINESS AND INDUSTRY 2016, 2017, 803
  • [3] TOPOLOGIC CONVEX OF PROBABILITIES ON A TOPOLOGIC SPACE
    LEGER, C
    SOURY, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1970, 270 (08): : 516 - &
  • [4] Topologic and Dynamic Resilience Model of Chinese Airport Network
    Li, Bei-Jie
    Du, Wen-Bo
    Liu, Chen
    Cai, Kai-Quan
    11TH IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION (ICCA), 2014, : 1460 - 1465
  • [5] NEW TOPOLOGIC RELATIONSHIP AS AN INDICATOR OF DRAINAGE NETWORK EVOLUTION
    COFFMAN, DM
    KELLER, EA
    MELHORN, WN
    WATER RESOURCES RESEARCH, 1972, 8 (06) : 1497 - 1505
  • [6] Influence of complex network topologic structureon system invulnerability
    Deng, Hong-Zhong
    Wu, Jun
    Li, Yong
    Lv, Xin
    Tan, Yue-Jin
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2008, 30 (12): : 2425 - 2428
  • [7] Degeneracy of topologic distance descriptors for cubic molecular graphs: Examples of small fullerenes
    Ivanciuc, O
    Laidboeur, T
    CabrolBass, D
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1997, 37 (03): : 485 - 488
  • [8] Sensitivity of channel network planform laws and the question of topologic randomness
    CostaCabral, MC
    Burges, SJ
    WATER RESOURCES RESEARCH, 1997, 33 (09) : 2179 - 2197
  • [9] TOPOLOGIC CONSIDERATIONS ON A CONTINUITY OF VARIABLES OF STATE IN A LINEAR-NETWORK
    BUIJZE, W
    ANNALES DES TELECOMMUNICATIONS-ANNALS OF TELECOMMUNICATIONS, 1974, 29 (11-1): : 575 - 579
  • [10] 'PIANO DAGUA' - LUCENA,A
    RUIDESOUSA, J
    COLOQUIO-LETRAS, 1983, (71): : 95 - 96