A Class of s-K Type Principal Components Estimators in the Linear Model

被引:0
|
作者
He, Daojiang [1 ]
Wu, Yan [1 ]
Xu, Kai [1 ]
机构
[1] Anhui Normal Univ, Dept Stat, Wuhu, Peoples R China
基金
中国国家自然科学基金;
关键词
Multicollinearity; Principal components estimator; r-k estimator; s-K estimator; Stein estimator; BIASED-ESTIMATORS; CORRELATED ERRORS; RIDGE-REGRESSION;
D O I
10.1080/03610918.2014.920878
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we introduce a new class of estimators called the s-K type principal components estimators to combat multicollinearity, which include the principal components regression (PCR) estimator, the r-k estimator and the s-K estimator as special cases. Necessary and sufficient conditions for the superiority of the new estimator over the PCR estimator, the r-k estimator and the s-K estimator are derived in the sense of the mean squared error matrix criterion. A Monte Carlo simulation study and a numerical example are given to illustrate the performance of the proposed estimator.
引用
收藏
页码:2709 / 2719
页数:11
相关论文
共 50 条