HIGHER INTEGRABILITY FOR PARABOLIC SYSTEMS WITH NON-STANDARD GROWTH AND DEGENERATE DIFFUSIONS

被引:0
|
作者
Boegelein, Verena [1 ]
Duzaar, Frank [1 ]
机构
[1] Univ Erlangen Nurnberg, Dept Math, D-91054 Erlangen, Germany
关键词
Higher integrability; degenerate parabolic systems; non-standard growth condition; parabolic p-Laplacean; NONLINEAR ELLIPTIC SYSTEMS; P-LAPLACIAN TYPE; WEAK SOLUTIONS; REGULARITY; GRADIENT; EQUATIONS; BOUNDARY; EXPONENT; FLUIDS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to establish a Meyer's type higher integrability result for weak solutions of possibly degenerate parabolic systems of the type partial derivative(t)u - div a(x, t, Du) = div(vertical bar F vertical bar F-p(x,F- t)-2). The vector-field a is assumed to fulfill a non-standard p(x, t)-growth condition. In particular it is shown that there exists epsilon > 0 depending only on the structural data such that there holds: vertical bar Du vertical bar(p(.)(1+epsilon)) is an element of L-loc(1), together with a local estimate for the p(.)(1+epsilon)-energy.
引用
收藏
页码:201 / 250
页数:50
相关论文
共 50 条