Ultrafiltration;
Air sparging;
Shear stress;
Hollow fiber;
Pulse bubbles;
PROFILES;
D O I:
10.1016/j.desal.2014.11.014
中图分类号:
TQ [化学工业];
学科分类号:
0817 ;
摘要:
Surface shear stress induced by different air sparging regimes on a submerged hollow fiber ultrafiltration module with horizontally-oriented, densely packed fibers was characterized. Continuous and intermittent (cycling on and off) coarse bubbles (0.75-2.5 mL), as well as large pulse bubble (150 and 500 mL) sparging were considered for a range of air flow rates. The power required to induce surface shear stress on the surface of the hollow fibers was substantially lower when using large pulse bubble sparging compared to both continuous and intermittent coarse bubble sparging. Results indicated that the air flow required for pulse bubble sparging was more than 80% lower than that required for coarse bubble sparging to induce comparable surface shear stress (and corresponding fouling control). This study demonstrates the potential value and efficiency of pulse bubble air sparging as a fouling control option in densely packed hollow fiber membrane systems. (C) 2014 Elsevier B.V. All rights reserved.
机构:
Musashi Inst Technol, Dept Civil Engn, Setagaya Ku, Tokyo 1588557, JapanMusashi Inst Technol, Dept Civil Engn, Setagaya Ku, Tokyo 1588557, Japan
Li, Tairi
Nagaoka, H.
论文数: 0引用数: 0
h-index: 0
机构:
Musashi Inst Technol, Dept Urban & Civil Engn, Setagaya Ku, Tokyo 1588557, JapanMusashi Inst Technol, Dept Civil Engn, Setagaya Ku, Tokyo 1588557, Japan
Nagaoka, H.
Itonaga, T.
论文数: 0引用数: 0
h-index: 0
机构:
Mitsubishi Rayon Engn Co Ltd, Aichi 4408601, JapanMusashi Inst Technol, Dept Civil Engn, Setagaya Ku, Tokyo 1588557, Japan
Itonaga, T.
Nakahara, Y.
论文数: 0引用数: 0
h-index: 0
机构:
Mitsubishi Rayon Engn Co Ltd, Aichi 4408601, JapanMusashi Inst Technol, Dept Civil Engn, Setagaya Ku, Tokyo 1588557, Japan
Nakahara, Y.
JOURNAL OF WATER SUPPLY RESEARCH AND TECHNOLOGY-AQUA,
2010,
59
(2-3):
: 191
-
197