Atomic layer deposition of high-κ dielectrics on nitrided silicon surfaces -: art. no. 192110

被引:13
|
作者
Xu, Y [1 ]
Musgrave, CB
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
关键词
D O I
10.1063/1.1922080
中图分类号
O59 [应用物理学];
学科分类号
摘要
An atomistic mechanism for the initiation of atomic layer deposition (ALD) of hafnium oxide (HfO2) on nitrided silicon surfaces was investigated using density functional theory. Reactions involving two different metal precursors are studied. Hf[N(CH3)(2)](4) does not form an adsorbed molecular complex, while HfCl4 has an adsorption energy of 0.30 eV. The ALD ligand exchange reaction is direct and 0.19 eV exothermic for Hf[N(CH3)(2)](4) with a barrier of 0.63 eV, while it is mediated by a complex intermediate and 0.40 eV endothermic for HfCl4 with a barrier of 0.97 eV. These results indicate that Hf[N(CH3)(2)](4) is both thermodynamically and kinetically superior to HfCl4 for the initial ALD of HfO2 on nitrided silicon surfaces. (c) 2005 American Institute of Physics.
引用
收藏
页码:1 / 3
页数:3
相关论文
共 50 条
  • [1] HfO2 high-κ gate dielectrics on Ge(100) by atomic oxygen beam deposition -: art. no. 032908
    Dimoulas, A
    Mavrou, G
    Vellianitis, G
    Evangelou, E
    Boukos, N
    Houssa, M
    Caymax, M
    APPLIED PHYSICS LETTERS, 2005, 86 (03) : 1 - 3
  • [2] Atomic Layer Deposition of High-κ Dielectrics on Sulphur-Passivated Germanium
    Sioncke, S.
    Lin, H. C.
    Brammertz, G.
    Delabie, A.
    Conard, T.
    Franquet, A.
    Meuris, M.
    Struyf, H.
    De Gendt, S.
    Heyns, M.
    Fleischmann, C.
    Temst, K.
    Vantomme, A.
    Muller, M.
    Kolbe, M.
    Beckhoff, B.
    Caymax, M.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (07) : H687 - H692
  • [3] Atomic layer deposition of lanthanum oxide films for high-κ gate dielectrics
    He, WM
    Schuetz, S
    Solanki, R
    Belot, J
    McAndrew, J
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2004, 7 (07) : G131 - G133
  • [4] Surface treatment for the atomic layer deposition of HfO2 on silicon -: art. no. 141913
    Damlencourt, JF
    Renault, O
    Martin, F
    Séméria, MN
    Billon, T
    Bedu, F
    APPLIED PHYSICS LETTERS, 2005, 86 (14) : 1 - 3
  • [5] In situ infrared spectroscopy of hafnium oxide growth on hydrogen-terminated silicon surfaces by atomic layer deposition -: art. no. 133103
    Ho, MT
    Wang, Y
    Brewer, RT
    Wielunski, LS
    Chabal, YJ
    Moumen, N
    Boleslawski, M
    APPLIED PHYSICS LETTERS, 2005, 87 (13) : 1 - 3
  • [6] Structural and stoichiometric change in nitrided HfO2 grown on Ge(100) by atomic layer deposition -: art. no. 111913
    Chung, KB
    Whang, CN
    Cho, MH
    Ko, DH
    APPLIED PHYSICS LETTERS, 2006, 88 (11)
  • [7] Hafnium oxide films by atomic layer deposition for high-κ gate dielectric applications:: Analysis of the density of nanometer-thin films -: art. no. 073116
    Puurunen, RL
    Delabie, A
    Van Elshocht, S
    Caymax, M
    Green, ML
    Brijs, B
    Richard, O
    Bender, H
    Conard, T
    Hoflijk, I
    Vandervorst, W
    Hellin, D
    Vanhaeren, D
    Zhao, C
    De Gendt, S
    Heyns, M
    APPLIED PHYSICS LETTERS, 2005, 86 (07) : 1 - 3
  • [8] Impact of titanium addition on film characteristics of HfO2 gate dielectrics deposited by atomic layer deposition -: art. no. 054104
    Triyoso, DH
    Hegde, RI
    Zollner, S
    Ramon, ME
    Kalpat, S
    Gregory, R
    Wang, XD
    Jiang, J
    Raymond, M
    Rai, R
    Werho, D
    Roan, D
    White, BE
    Tobin, PJ
    JOURNAL OF APPLIED PHYSICS, 2005, 98 (05)
  • [9] Substrate-Driven Atomic Layer Deposition of High-κ Dielectrics on 2D Materials
    Schiliro, Emanuela
    Lo Nigro, Raffaella
    Roccaforte, Fabrizio
    Giannazzo, Filippo
    APPLIED SCIENCES-BASEL, 2021, 11 (22):
  • [10] Impact of Co-Reactants in Atomic Layer Deposition of High-κ Dielectrics on Monolayer Molybdenum Disulfide
    Healy, Brendan F. M.
    Pain, Sophie L.
    Walker, Marc
    Grant, Nicholas E.
    Murphy, John D.
    ACS APPLIED NANO MATERIALS, 2025,