Hierarchical Co-Attention Selection Network for Interpretable Fake News Detection

被引:3
|
作者
Ge, Xiaoyi [1 ]
Hao, Shuai [2 ]
Li, Yuxiao [3 ]
Wei, Bin [1 ]
Zhang, Mingshu [1 ]
机构
[1] Engn Univ PAP, Coll Cryptog Engn, Xian 710018, Peoples R China
[2] Stevens Inst Technol, Elect & Comp Engn, Hoboken, NJ 07030 USA
[3] McGill Univ, Math & Stat, Montreal, PQ H3A 0G4, Canada
关键词
fake news detection; interpretable AI; co-attention mechanism; hierarchical selection network;
D O I
10.3390/bdcc6030093
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Social media fake news has become a pervasive and problematic issue today with the development of the internet. Recent studies have utilized different artificial intelligence technologies to verify the truth of the news and provide explanations for the results, which have shown remarkable success in interpretable fake news detection. However, individuals' judgments of news are usually hierarchical, prioritizing valuable words above essential sentences, which is neglected by existing fake news detection models. In this paper, we propose an interpretable novel neural network-based model, the hierarchical co-attention selection network (HCSN), to predict whether the source post is fake, as well as an explanation that emphasizes important comments and particular words. The key insight of the HCSN model is to incorporate the Gumbel-Max trick in the hierarchical co-attention selection mechanism that captures sentence-level and word-level information from the source post and comments following the sequence of words-sentences-words-event. In addition, HCSN enjoys the additional benefit of interpretability-it provides a conscious explanation of how it reaches certain results by selecting comments and highlighting words. According to the experiments conducted on real-world datasets, our model outperformed state-of-the-art methods and generated reasonable explanations.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Multi-Modal Co-Attention Capsule Network for Fake News Detection
    Yin, Chunyan
    Chen, Yongheng
    OPTICAL MEMORY AND NEURAL NETWORKS, 2024, 33 (01) : 13 - 27
  • [2] Multi-Modal Co-Attention Capsule Network for Fake News Detection
    Optical Memory and Neural Networks, 2024, 33 : 13 - 27
  • [3] Entity-Aware Dual Co-Attention Network for Fake News Detection
    Yang, Sin-Han
    Chen, Chung-Chi
    Huang, Hen-Hsen
    Chen, Hsin-Hsi
    17TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EACL 2023, 2023, : 106 - 113
  • [4] Multi-Modal Co-Attention Capsule Network for Fake News Detection
    Chunyan Yin
    Yongheng Chen
    Optical Memory and Neural Networks (Information Optics), 2024, 33 (01): : 13 - 27
  • [5] Multimodal Fusion with Co-Attention Networks for Fake News Detection
    Wu, Yang
    Zhan, Pengwei
    Zhang, Yunjian
    Wang, Liming
    Xu, Zhen
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 2560 - 2569
  • [6] Explainable Detection of Fake News on Social Media Using Pyramidal Co-Attention Network
    Khan, Fazlullah
    Alturki, Ryan
    Srivastava, Gautam
    Gazzawe, Foziah
    Shah, Syed Tauhid Ullah
    Mastorakis, Spyridon
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, 11 (04) : 4574 - 4583
  • [7] GBCA: Graph Convolution Network and BERT combined with Co-Attention for fake news detection
    Zhang, Zhen
    Lv, Qiyun
    Jia, Xiyuan
    Yun, Wenhao
    Miao, Gongxun
    Mao, Zongqing
    Wu, Guohua
    PATTERN RECOGNITION LETTERS, 2024, 180 : 26 - 32
  • [8] Multi-view co-attention network for fake news detection by modeling topic-specific user and news source credibility
    Bazmi, Parisa
    Asadpour, Masoud
    Shakery, Azadeh
    INFORMATION PROCESSING & MANAGEMENT, 2023, 60 (01)
  • [9] Hierarchical Multi-modal Contextual Attention Network for Fake News Detection
    Qian, Shengsheng
    Wang, Jinguang
    Hu, Jun
    Fang, Quan
    Xu, Changsheng
    SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, : 153 - 162
  • [10] GCAN: Graph-aware Co-Attention Networks for Explainable Fake News Detection on Social Media
    Lu, Yi-Ju
    Li, Cheng-Te
    58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), 2020, : 505 - 514