Topological Entropy of a Class of Subshifts of Finite Type

被引:0
|
作者
Xu, Jin Zhong [1 ,2 ]
Wang, Lan Yu [3 ]
机构
[1] Chinese Acad Sci, Key Lab Space Utilizat, Technol & Engn Ctr Space Utilizat, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
基金
美国国家科学基金会;
关键词
Symbolic dynamical system; subshift of finite type; topological entropy; transfer matrix; Toeplitz matrix; TOEPLITZ MATRICES; DETERMINANTS; SHIFTS;
D O I
10.1007/s10114-018-7439-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we construct a special class of subshifts of finite type. By studying the spectral radius of the transfer matrix associated with the subshift of finite type, we obtain an estimation of its topological entropy. Interestingly, we find that the topological entropy of this class of subshifts of finite type converges monotonically to log(n + 1) (a constant only depends on the structure of the transfer matrices) as the increasing of the order of the transfer matrices.
引用
收藏
页码:1765 / 1777
页数:13
相关论文
共 50 条