Prediction of Multidimensional Spatial Variation Data via Bayesian Tensor Completion

被引:5
|
作者
Luan, Jiali [1 ,2 ]
Zhang, Zheng [3 ]
机构
[1] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
[2] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
[3] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
关键词
Testing; Probes; Semiconductor device measurement; Arrays; Bayes methods; Numerical models; Bayesian statistics; data analytics; process variation; tensor; tensor completion; variation modeling; UNCERTAINTY QUANTIFICATION; STATISTICAL FRAMEWORK; EXTRACTION; PROBE;
D O I
10.1109/TCAD.2019.2891987
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a multidimensional computational method to predict the spatial variation data inside and across multiple dies of a wafer. This technique is based on tensor computation. A tensor is a high-dimensional generalization of a matrix or a vector. By exploiting the hidden low-rank property of a high-dimensional data array, the large amount of unknown variation testing data may be predicted from a few random measurement samples. The tensor rank, which decides the complexity of a tensor representation, is decided by an available variational Bayesian approach. Our approach is validated by a practical chip testing data set, and it can be easily generalized to characterize the process variations of multiple wafers. Our approach is more efficient than the previous virtual probe techniques in terms of memory and computational cost when handling high-dimensional chip testing data.
引用
收藏
页码:547 / 551
页数:5
相关论文
共 50 条
  • [1] Bayesian Tensor Completion for Network Traffic Data Prediction
    Yang, Zecan
    Yang, Laurence T.
    Wang, Huaimin
    Ren, Bocheng
    Yang, Xiangli
    IEEE NETWORK, 2023, 37 (04): : 74 - 80
  • [2] Bayesian robust tensor completion via CP decomposition
    Wang, Xiaohang
    Yu, Philip L. H.
    Yang, Weidong
    Su, Jun
    PATTERN RECOGNITION LETTERS, 2022, 163 : 121 - 128
  • [3] Prediction of categorical spatial data via Bayesian updating
    Huang, Xiang
    Wang, Zhizhong
    Guo, Jianhua
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2016, 30 (07) : 1426 - 1449
  • [4] RECONSTRUCTION OF SEISMIC DATA VIA TENSOR COMPLETION
    Kreimer, Nadia
    Sacchi, Mauricio D.
    2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2012, : 29 - 32
  • [5] Predicting multidimensional data via tensor learning
    Brandi, Giuseppe
    Di Matteo, T.
    JOURNAL OF COMPUTATIONAL SCIENCE, 2021, 53
  • [6] Bayesian spatial prediction of skew and censored data via a hybrid algorithm
    Rivaz, Firoozeh
    Khaledi, Majid Jafari
    JOURNAL OF APPLIED STATISTICS, 2015, 42 (09) : 1993 - 2009
  • [7] Sparse Bayesian Tensor Completion for Data Recovery in Intelligent IoT Systems
    Zhao, Honglu
    Yang, Laurence T.
    Yang, Zecan
    Liu, Debin
    Nie, Xin
    Ren, Bocheng
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (15): : 25682 - 25693
  • [8] Bayesian Prediction in Spatial Data Analysis
    Khaledi, M. J.
    Mohammadzadeh, M.
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2006, 1 (01): : 33 - 46
  • [9] Bayesian Robust Tensor Decomposition Based on MCMC Algorithm for Traffic Data Completion
    Huang, Longsheng
    Zhu, Yu
    Shao, Hanzeng
    Tang, Lei
    Zhu, Yun
    Yu, Gaohang
    IET SIGNAL PROCESSING, 2025, 2025 (01)
  • [10] Efficient and Accurate Traffic Flow Prediction via Incremental Tensor Completion
    Liao, Jinzhi
    Tang, Jiuyang
    Zeng, Weixin
    Zhao, Xiang
    IEEE ACCESS, 2018, 6 : 36897 - 36905