Green's function for the operator M(partial derivativet)-ω(t)

被引:0
|
作者
Kozlov, V [1 ]
Maz'ya, V [1 ]
机构
[1] Linkoping Univ, Dept Math, S-58183 Linkoping, Sweden
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:37 / 45
页数:9
相关论文
共 50 条
  • [1] Uniqueness and solvability properties of the operator M(partial derivativet)-ω(t)
    Kozlov, V
    Maz'ya, V
    THEORY OF A HIGHER-ORDER STURM-LIOUVILLE EQUATION, 1997, 1659 : 47 - 80
  • [2] The operator M(partial derivativet) on a semiaxis and an interval
    Kozlov, V
    Maz'ya, V
    THEORY OF A HIGHER-ORDER STURM-LIOUVILLE EQUATION, 1997, 1659 : 15 - 24
  • [3] The operator M(partial derivativet)-ω0 with constant ω0
    Kozlov, V
    Maz'ya, V
    THEORY OF A HIGHER-ORDER STURM-LIOUVILLE EQUATION, 1997, 1659 : 25 - 35
  • [4] Properties of M(partial derivativet)-ω(t) under various assumptions about ω(t)
    Kozlov, V
    Maz'ya, V
    THEORY OF A HIGHER-ORDER STURM-LIOUVILLE EQUATION, 1997, 1659 : 81 - 110
  • [5] Green's function for the partial derivative operator on genus-2 surfaces
    Pinson, HT
    NUCLEAR PHYSICS B, 1996, 477 (02) : 567 - 576
  • [6] On the Green function of the (⊕+m2)k operator
    Tariboon, Jessada
    Kananthai, Amnuay
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2007, 18 (04) : 297 - 304
  • [7] When is an operator S an analytic function of an operator T ?
    John B. Conway
    Don Hadwin
    Acta Scientiarum Mathematicarum, 2022, 88 : 263 - 278
  • [8] When is an operator S an analytic function of an operator T?
    Conway, John B.
    Hadwin, Don
    ACTA SCIENTIARUM MATHEMATICARUM, 2022, 88 (1-2): : 263 - 278
  • [9] Estimation of the Schrodinger operator Green's function
    Arsen'ev, AA
    THEORETICAL AND MATHEMATICAL PHYSICS, 1998, 115 (01) : 441 - 447
  • [10] Operator derivation of the quasiclassical Green's function
    Krachkov, P. A.
    Milstein, A. I.
    PHYSICS-USPEKHI, 2018, 61 (09) : 896 - 899