PV Forecasting Using Support Vector Machine Learning in a Big Data Analytics Context

被引:41
|
作者
Preda, Stefan [1 ]
Oprea, Simona-Vasilica [2 ]
Bara, Adela [2 ]
Belciu , Anda [2 ]
机构
[1] Oracle Romania, Floreasca Pk 43 Soseaua Pipera, Bucharest 014254, Romania
[2] Bucharest Univ Econ Studies, Dept Econ Informat & Cybernet, Romana Sq 6, Bucharest 010374, Romania
来源
SYMMETRY-BASEL | 2018年 / 10卷 / 12期
关键词
smart hybrid renewable energy system; photovoltaic systems forecast; sensors; data analytics; big data; smart adaptive switching module; support vector machine; ENERGY MANAGEMENT; PANELS;
D O I
10.3390/sym10120748
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Renewable energy systems (RES) are reliable by nature; the sun and wind are theoretically endless resources. From the beginnings of the power systems, the concern was to know "how much" energy will be generated. Initially, there were voltmeters and power meters; nowadays, there are much more advanced solar controllers, with small displays and built-in modules that handle big data. Usually, large photovoltaic (PV)-battery systems have sophisticated energy management strategies in order to operate unattended. By adding the information collected by sensors managed with powerful technologies such as big data and analytics, the system is able to efficiently react to environmental factors and respond to consumers' requirements in real time. According to the weather parameters, the output of PV could be symmetric, supplying an asymmetric electricity demand. Thus, a smart adaptive switching module that includes a forecasting component is proposed to improve the symmetry between the PV output and daily load curve. A scaling approach for smaller off-grid systems that provides an accurate forecast of the PV output based on data collected from sensors is developed. The proposed methodology is based on sensor implementation in RES operation and big data technologies are considered for data processing and analytics. In this respect, we analyze data captured from loggers and forecast the PV output with Support Vector Machine (SVM) and linear regression, finding that Root Mean Square Error (RMSE) for prediction is considerably improved when using more parameters in the machine learning process.
引用
收藏
页数:38
相关论文
共 50 条
  • [1] Big data Analytics Using Support Vector Machine
    Amudha, P.
    Sivakumari, S.
    IEEE INTERNATIONAL CONFERENCE ON SOFT-COMPUTING AND NETWORK SECURITY (ICSNS 2018), 2018, : 63 - +
  • [2] Forecasting of Stock Market by Combining Machine Learning and Big Data Analytics
    Dhas, J. L. Joneston
    Vigila, S. Maria Celestin
    Star, C. Ezhil
    SOFT COMPUTING SYSTEMS, ICSCS 2018, 2018, 837 : 385 - 395
  • [3] A Hybrid Support Vector Machine Algorithm for Big Data Heterogeneity Using Machine Learning
    Ul Ahsaan, Shafqat
    Kaur, Harleen
    Mourya, Ashish Kumar
    Naaz, Sameena
    SYMMETRY-BASEL, 2022, 14 (11):
  • [4] Big Data Analytics using Machine Learning Techniques
    Mittal, Shweta
    Sangwan, Om Prakash
    2019 9TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING (CONFLUENCE 2019), 2019, : 203 - 207
  • [5] Machine learning for big data analytics
    Oja, E. (erkki.oja@aalto.fi), 1600, Springer Verlag (384):
  • [6] Visual Context Learning with Big Data Analytics
    Chandrashekar, Mayanka
    Lee, Yugyung
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2016, : 600 - 607
  • [7] Big data analytics for financial Market volatility forecast based on support vector machine
    Yang, Rongjun
    Yu, Lin
    Zhao, Yuanjun
    Yu, Hongxin
    Xu, Guiping
    Wu, Yiting
    Liu, Zhengkai
    INTERNATIONAL JOURNAL OF INFORMATION MANAGEMENT, 2020, 50 : 452 - 462
  • [8] Machine learning for Big Data analytics in plants
    Ma, Chuang
    Zhang, Hao Helen
    Wang, Xiangfeng
    TRENDS IN PLANT SCIENCE, 2014, 19 (12) : 798 - 808
  • [9] Big Data, Predictive Analytics and Machine Learning
    Ongsulee, Pariwat
    Chotchaung, Veena
    Bamrungsi, Eak
    Rodcheewit, Thanaporn
    2018 16TH INTERNATIONAL CONFERENCE ON ICT AND KNOWLEDGE ENGINEERING (ICT&KE), 2018, : 37 - 42
  • [10] Machine Learning Technologies for Big Data Analytics
    Gandomi, Amir H.
    Chen, Fang
    Abualigah, Laith
    ELECTRONICS, 2022, 11 (03)