Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries

被引:273
|
作者
Chun, Sang-Jin [1 ,2 ]
Choi, Eun-Sun [3 ]
Lee, Eun-Ho [3 ]
Kim, Jung Hyeun [2 ]
Lee, Sun-Young [1 ]
Lee, Sang-Young [3 ]
机构
[1] Korea Forest Res Inst, Dept Forest Resources Utilizat, Seoul 130712, South Korea
[2] Univ Seoul, Dept Chem Engn, Seoul 130743, South Korea
[3] Kangwon Natl Univ, Dept Chem Engn, Chunchon 200701, South Korea
基金
新加坡国家研究基金会;
关键词
POLYETHYLENE SEPARATORS; NONWOVEN SEPARATORS; HIGH-VOLTAGE; LIQUID; ELECTROLYTES;
D O I
10.1039/c2jm32415f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Eco-friendly cellulose nanofibers (CNFs), a core constituent of cellulose, have garnered increasing attention as a promising sustainable building block source for advanced materials in various application fields. In the present study, we successfully fabricate a cellulose nanofiber paper from a CNF suspension and explore its potential application to a separator membrane for lithium-ion batteries. In contrast to macro/microscopic cellulose fibers that have been commonly used for typical papers, the CNFs are characterized by the nanometer-scale diameter/length up to several micrometers and highly crystalline domains, contributing to excellent mechanical/thermal properties and nanoporous structure evolution. A salient feature of the cellulose nanofiber paper-derived separator membrane (referred to as "CNP separator") is an electrolyte-philic, nanoscale labyrinth structure established between closely piled CNFs. The unusual porous structure is fine-tuned by varying the composition ratio of the solvent mixture (isopropyl alcohol (IPA)-water) in the CNF suspension, wherein IPA is introduced as a CNF-disassembling agent while water promotes dense packing of CNFs. Based on a solid understanding of separator characteristics, electrochemical performances of cells assembled with the CNP separators are investigated. Notably, the CNP separator manufactured with IPA-water = 95/5 (vol/vol%) exhibits highly interconnected nanoporous network channels and satisfactory mechanical properties, which play a significant role in improving separator properties and cell performance. This study underlines that the porous structure-tuned cellulose nanofiber papers provide a promising new route for the fabrication of advanced separator membranes, which will also serve as a key component to boost the development of next-generation paper batteries.
引用
收藏
页码:16618 / 16626
页数:9
相关论文
共 50 条
  • [1] Eco-friendly polyvinyl alcohol/cellulose nanofiber-Li+ composite separator for high-performance lithium-ion batteries
    Liu, Chuanting
    Shao, Ziqiang
    Wang, Jianquan
    Lu, Chengyi
    Wang, Zhenhua
    RSC ADVANCES, 2016, 6 (100): : 97912 - 97920
  • [2] Cellulose ultrafine fibers embedded with titania particles as a high performance and eco-friendly separator for lithium-ion batteries
    Boriboon, Dul
    Vongsetskul, Thammasit
    Limthongkul, Pimpa
    Kobsiriphat, Worawarit
    Tammawat, Phontip
    CARBOHYDRATE POLYMERS, 2018, 189 : 145 - 151
  • [3] Craphene lithium-ion batteries: Eco-friendly & sustainable
    Elbokl, Tamer
    Canadian Mining Journal, 2023, 144 (08) : 32 - 34
  • [4] Carboxymethyl cellulose membranes blended with carbon nanotubes/Ag nanoparticles for eco-friendly safer lithium-ion batteries
    Tohamy, Hebat-Allah S.
    El-Sakhawy, Mohamed
    Elnasharty, Mohamed M. M.
    DIAMOND AND RELATED MATERIALS, 2023, 138
  • [5] h Cellulose Aerogel Membranes with a Tunable Nanoporous Network as a Matrix of Gel Polymer Electrolytes for Safer Lithium-Ion Batteries
    Wan, Jiqiang
    Zhang, Jinming
    Yu, Jian
    Zhang, Jun
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (29) : 24591 - 24599
  • [6] Eco-friendly aerosol multicoated silicon anodes in lithium-ion batteries
    Zhao, Pin-Yi
    Gonzalez, Antonio Ruiz
    Li, Bing
    Choy, Kwang-Leong
    MATERIALS LETTERS, 2022, 324
  • [7] High Flashpoint and Eco-Friendly Electrolyte Solvent for Lithium-Ion Batteries
    Stroebel, Marco
    Kiefer, Larissa
    Pross-Brakhage, Julia
    Hemmerling, Jessica
    Finster, Philipp
    Ziebert, Carlos
    Birke, Kai Peter
    BATTERIES-BASEL, 2023, 9 (07):
  • [8] Electrospun nanofiber-coated separator membranes for lithium-ion rechargeable batteries
    Lee, Hun
    Alcoutlabi, Mataz
    Watson, Jill V.
    Zhang, Xiangwu
    JOURNAL OF APPLIED POLYMER SCIENCE, 2013, 129 (04) : 1939 - 1951
  • [9] Thermally stable, nano-porous and eco-friendly sodium alginate/attapulgite separator for lithium-ion batteries
    Song, Qingquan
    Li, Aijun
    Shi, Lei
    Qian, Cheng
    Feric, Tony Gordon
    Fu, Yanke
    Zhang, Hanrui
    Li, Zeyuan
    Wang, Peiyu
    Li, Zheng
    Zhai, Haowei
    Wang, Xue
    Dontigny, Martin
    Zaghib, Karim
    Park, Ah-Hyung
    Myers, Kristin
    Chuan, Xiuyun
    Yang, Yuan
    ENERGY STORAGE MATERIALS, 2019, 22 : 48 - 56
  • [10] Chitosan nanofiber paper used as separator for high performance and sustainable lithium-ion batteries
    Song, Yanghui
    Zhao, Guanglei
    Zhang, Sihan
    Xie, Chong
    Yang, Runde
    Li, Xiaofeng
    CARBOHYDRATE POLYMERS, 2024, 329