An Interactive Machine Learning System for Image Advertisements

被引:0
|
作者
Foerste, Markus [1 ]
Nadj, Mario [2 ]
Knaeble, Merlin [2 ]
Maedche, Alexander [2 ]
Gehrmann, Leonie [3 ]
Stahl, Florian [3 ]
机构
[1] Collect Mind AG, Leonberg, Germany
[2] Karlsruhe Inst Technol, Inst Informat Syst & Mkt, Karlsruhe, Germany
[3] Univ Mannheim, Res Grp Quantitat Mkt & Consumer Analyt, Mannheim, Germany
关键词
advertising; image ads; interactive machine learning;
D O I
10.1145/3473856.3474027
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Advertising is omnipresent in all countries around the world and has a strong influence on consumer behavior. Given that advertisements aim to be memorable, attract attention and convey the intended information in a limited space, it seems striking that previous research in economics and management has mostly neglected the content and style of actual advertisements and their evolution over time. With this in mind, we collected more than one million print advertisements from the English-language weekly news magazine "The Economist" from 1843 to 2014. However, there is a lack of interactive intelligent systems capable of processing such a vast amount of image data and allowing users to automatically and manually add metadata, explore images, find and test assertions, and use machine learning techniques they did not have access to before. Inspired by the research field of interactive machine learning, we propose such a system that enables domain experts like marketing scholars to process and analyze this huge collection of image advertisements.
引用
收藏
页码:574 / 577
页数:4
相关论文
共 50 条
  • [1] ilastik: interactive machine learning for (bio) image analysis
    Berg, Stuart
    Kutra, Dominik
    Kroeger, Thorben
    Straehle, Christoph N.
    Kausler, Bernhard X.
    Haubold, Carsten
    Schiegg, Martin
    Ales, Janez
    Beier, Thorsten
    Rudy, Markus
    Eren, Kemal
    Cervantes, Jaime I.
    Xu, Buote
    Beuttenmueller, Fynn
    Wolny, Adrian
    Zhang, Chong
    Koethe, Ullrich
    Hamprecht, Fred A.
    Kreshuk, Anna
    NATURE METHODS, 2019, 16 (12) : 1226 - 1232
  • [2] ilastik: interactive machine learning for (bio)image analysis
    Stuart Berg
    Dominik Kutra
    Thorben Kroeger
    Christoph N. Straehle
    Bernhard X. Kausler
    Carsten Haubold
    Martin Schiegg
    Janez Ales
    Thorsten Beier
    Markus Rudy
    Kemal Eren
    Jaime I Cervantes
    Buote Xu
    Fynn Beuttenmueller
    Adrian Wolny
    Chong Zhang
    Ullrich Koethe
    Fred A. Hamprecht
    Anna Kreshuk
    Nature Methods, 2019, 16 : 1226 - 1232
  • [3] Visual and structural feature combination in an interactive machine learning system for medical image segmentation
    Galisot, Gaetan
    Ramel, Jean -Yves
    Brouard, Thierry
    Chaillou, Elodie
    Serres, Barthelemy
    MACHINE LEARNING WITH APPLICATIONS, 2022, 8
  • [4] Image-Based Machine Learning for Reduction of User Fatigue in an Interactive Model Calibration System
    Singh, Abhishek
    Minsker, Barbara S.
    Bajcsy, Peter
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2010, 24 (03) : 241 - 251
  • [5] New interactive machine learning tool for marine image analysis
    Clark, H. Poppy
    Smith, Abraham George
    Fletcher, Daniel McKay
    Larsson, Ann I.
    Jaspars, Marcel
    De Clippele, Laurence H.
    ROYAL SOCIETY OPEN SCIENCE, 2024, 11 (05):
  • [6] Application of Machine Learning in Air Hockey Interactive Control System
    Chang, Ching-Lung
    Chen, Shuo-Tsung
    Chang, Chuan-Yu
    Jhou, You-Chen
    SENSORS, 2020, 20 (24) : 1 - 22
  • [7] AIDE: Accelerating image-based ecological surveys with interactive machine learning
    Kellenberger, Benjamin
    Tuia, Devis
    Morris, Dan
    METHODS IN ECOLOGY AND EVOLUTION, 2020, 11 (12): : 1716 - 1727
  • [8] Interactive Mars Image Content-Based Search with Interpretable Machine Learning
    Vasu, Bhavan
    Lu, Steven
    Dunkel, Emily
    Wagstaff, Kiri L.
    Grimes, Kevin
    McAuley, Michael
    THIRTY-EIGTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 21, 2024, : 22976 - 22982
  • [9] Explanatory Interactive Machine Learning
    Teso, Stefano
    Kersting, Kristian
    AIES '19: PROCEEDINGS OF THE 2019 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY, 2019, : 239 - 245
  • [10] Arguments in Interactive Machine Learning
    Mozina, Martin
    INFORMATICA-JOURNAL OF COMPUTING AND INFORMATICS, 2018, 42 (01): : 53 - 59