Lax embeddings of generalized quadrangles in finite projective spaces

被引:7
|
作者
Thas, JA [1 ]
Van Maldeghem, H [1 ]
机构
[1] State Univ Ghent, Dept Pure Math & Comp Algebra, B-9000 Ghent, Belgium
关键词
D O I
10.1112/S0024611501012680
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:402 / 440
页数:39
相关论文
共 50 条
  • [1] Lax embeddings of polar spaces in finite projective spaces
    Thas, JA
    Van Maldeghem, H
    FORUM MATHEMATICUM, 1999, 11 (03) : 349 - 367
  • [2] GENERALIZED QUADRANGLES IN PROJECTIVE SPACES
    BUEKENHOUT, F
    LEFEVRE, C
    ARCHIV DER MATHEMATIK, 1974, 25 (05) : 540 - 552
  • [3] Lax Projective Embeddings of Polar Spaces
    Eva Ferrara Dentice
    Giuseppe Marino
    Antonio Pasini
    Milan Journal of Mathematics, 2004, 72 (1) : 335 - 377
  • [4] Generalized Veronesean embeddings of projective spaces, Part II. The lax case.
    Akca, Z.
    Bayar, A.
    Ekmekci, S.
    Kaya, R.
    Thas, J. A.
    Van Maldeghern, H.
    ARS COMBINATORIA, 2012, 103 : 65 - 80
  • [5] Generalized Veronesean embeddings of projective spaces
    Joseph A. Thas
    Hendrik Van Maldeghem
    Combinatorica, 2011, 31 : 615 - 629
  • [6] Generalized Veronesean embeddings of projective spaces
    Thas, Joseph A.
    Van Maldeghem, Hendrik
    COMBINATORICA, 2011, 31 (05) : 615 - 629
  • [7] Flat lax and weak lax embeddings of finite generalized hexagons
    Thas, JA
    Van Maldeghem, H
    EUROPEAN JOURNAL OF COMBINATORICS, 1998, 19 (06) : 733 - 751
  • [8] Generalized quadrangles weakly embedded in finite projective space
    Thas, JA
    Van Maldeghem, H
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1998, 73 (1-2) : 353 - 361
  • [9] The chromatic number of two families of generalized Kneser graphs related to finite generalized quadrangles and finite projective 3-spaces
    Metsch, Klaus
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (03):
  • [10] On embeddings of the flag geometries of projective planes in finite projective spaces
    Thas, JA
    Van Maldeghem, H
    DESIGNS CODES AND CRYPTOGRAPHY, 1999, 17 (1-3) : 97 - 104