Hand Gesture Recognition Based on sEMG Signal and Convolutional Neural Network

被引:16
|
作者
Su, Ziyi [1 ]
Liu, Handong [1 ]
Qian, Jinwu [1 ]
Zhang, Zhen [1 ]
Zhang, Lunwei [2 ]
机构
[1] Shanghai Univ, Sch Mechatron Engn & Automat, 99 Shangda Rd, Shanghai, Peoples R China
[2] Tongji Univ, Sch Aerosp Engn & Mech, 1239 Siping Rd, Shanghai, Peoples R China
关键词
Convolutional neural network; machine learning; sEMG signal; hand gesture recognition; PATTERN-RECOGNITION; PROSTHETIC HANDS; SURFACE; CLASSIFICATION; MOVEMENTS; FEATURES; NUMBER;
D O I
10.1142/S0218001421510125
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, deep learning has become a promising technique for constructing gesture recognition classifiers from surface electromyography (sEMG) signals in human-computer interaction. In this paper, we propose a gesture recognition method with sEMG signals based on a deep multi-parallel convolutional neural network (CNN), which solves the problem that traditional machine learning methods may lose too much useful information during feature extraction. CNNs provide an efficient way to constrain the complexity of feedforward neural networks by weight sharing and restriction to local connections. Sophisticated feature extraction is to be avoided and hand gestures are to be classified directly. A multi-parallel and multi-convolution layer convolution structure is proposed to classify hand gestures. Experiment results show that in comparison with five traditional machine learning methods, the proposed method could achieve higher accuracy.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] sEMG based hand gesture recognition with deformable convolutional network
    Hao Wang
    Yue Zhang
    Chao Liu
    Honghai Liu
    International Journal of Machine Learning and Cybernetics, 2022, 13 : 1729 - 1738
  • [2] sEMG based hand gesture recognition with deformable convolutional network
    Wang, Hao
    Zhang, Yue
    Liu, Chao
    Liu, Honghai
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2022, 13 (06) : 1729 - 1738
  • [3] Dynamic Hand Gesture Recognition via Electromyographic Signal Based on Convolutional Neural Network
    Song, Shouan
    Yang, Lei
    Wu, Man
    Liu, Yanhong
    Yu, Hongnian
    2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2021, : 876 - 881
  • [4] SEMG-BASED HAND GESTURE RECOGNITION VIA DILATED CONVOLUTIONAL NEURAL NETWORKS
    Rahimian, Elahe
    Zabihi, Soheil
    Atashzar, S. Farokh
    Asif, Amir
    Mohammadi, Arash
    2019 7TH IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (IEEE GLOBALSIP), 2019,
  • [5] sEMG-Based Hand Gesture Recognition Using Binarized Neural Network
    Kang, Soongyu
    Kim, Haechan
    Park, Chaewoon
    Sim, Yunseong
    Lee, Seongjoo
    Jung, Yunho
    SENSORS, 2023, 23 (03)
  • [6] Hand gesture recognition with deep residual network using Semg signal
    Khattak, Abid Saeed
    Zain, Azlan bin Mohd
    Hassan, Rohayanti Binti
    Nazar, Fakhra
    Haris, Muhammad
    Ahmed, Bilal Ashfaq
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2024, 69 (03): : 275 - 291
  • [7] CONVOLUTIONAL NEURAL NETWORK ARCHITECTURE FOR HAND GESTURE RECOGNITION
    Pinzon Arenas, Javier Orlando
    Useche Murillo, Paula Catalina
    Jimenez Moreno, Robinson
    PROCEEDINGS OF THE 2017 IEEE XXIV INTERNATIONAL CONFERENCE ON ELECTRONICS, ELECTRICAL ENGINEERING AND COMPUTING (INTERCON), 2017,
  • [8] Deep Convolutional Spiking Neural Network Based Hand Gesture Recognition
    Ke, Weijie
    Xing, Yannan
    Di Caterina, Gaetano
    Petropoulakis, Lykourgos
    Soraghan, John
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [9] Hand Gesture Recognition Using Convolutional Neural Network
    Ahlawat, Savita
    Batra, Vaibhav
    Banerjee, Snehashish
    Saha, Joydeep
    Garg, Aman K.
    INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING AND COMMUNICATIONS, VOL 2, 2019, 56 : 179 - 186
  • [10] Hand Gesture Recognition of sEMG Based on Modified Kohonen Network
    Zhang Li
    Tian Yantao
    Li Yang
    2011 INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATIONS AND CONTROL (ICECC), 2011, : 1476 - 1479