Motion of the charged test particles in Kerr-Newman-Taub-NUT spacetime and analytical solutions

被引:28
|
作者
Cebeci, Hakan [1 ]
Ozdemir, Nulifer [2 ]
Sentorun, Secil [1 ]
机构
[1] Anadolu Univ, Dept Phys, TR-26470 Eskisehir, Turkey
[2] Anadolu Univ, Dept Math, TR-26470 Eskisehir, Turkey
关键词
BLACK-HOLE; FIELDS;
D O I
10.1103/PhysRevD.93.104031
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this work, we study the motion of charged test particles in Kerr-Newman-Taub-NUT spacetime. We analyze the angular and the radial parts of the orbit equations and examine the possible orbit types. We also investigate the spherical orbits and their stabilities. Furthermore, we obtain the analytical solutions of the equations of motion and express them in terms of Jacobian and Weierstrass elliptic functions. Finally, we discuss the observables of the bound motion and calculate the perihelion shift and Lense-Thirring effect for the bound orbits.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] The equatorial motion of the charged test particles in Kerr-Newman-Taub-NUT spacetime
    Cebeci, Hakan
    Ozdemir, Nulifer
    Sentorun, Secil
    GENERAL RELATIVITY AND GRAVITATION, 2019, 51 (07)
  • [2] The equatorial motion of the charged test particles in Kerr–Newman–Taub–NUT spacetime
    Hakan Cebeci
    Nülifer Özdemir
    Seçil Şentorun
    General Relativity and Gravitation, 2019, 51
  • [3] Gravitomagnetism in the Kerr-Newman-Taub-NUT spacetime
    Bini, D
    Cherubini, C
    Jantzen, RT
    Mashhoon, B
    CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (03) : 457 - 468
  • [4] Circular geodesics in the Kerr-Newman-Taub-NUT spacetime
    Pradhan, Parthapratim
    CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (16)
  • [5] Area product and mass formula for Kerr-Newman-Taub-NUT spacetime
    Pradhan, Parthapratim
    MODERN PHYSICS LETTERS A, 2015, 30 (35)
  • [6] Magnetized Kerr-Newman-Taub-NUT spacetimes
    Ghezelbash, Masoud
    Siahaan, Haryanto M.
    EUROPEAN PHYSICAL JOURNAL C, 2021, 81 (07):
  • [7] Kerr-Newman-Taub-Nut black hole tunneling radiation
    Zakria, Ayesha
    Qaiser, Saba
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (11):
  • [8] Smoothness of the future and past trapped sets in Kerr-Newman-Taub-NUT spacetimes
    Paganini, Claudio F.
    Oancea, Marius A.
    CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (06)
  • [9] Chaos bound in Kerr-Newman-Taub-NUT black holes via circular motions
    陈德友
    高钏泓
    Chinese Physics C, 2023, 47 (01) : 297 - 306
  • [10] Chaos bound in Kerr-Newman-Taub-NUT black holes via circular motions*
    Chen, Deyou
    Gao, Chuanhong
    CHINESE PHYSICS C, 2023, 47 (01)