Multichannel AR parameter estimation from noisy observations as an errors-in-variables issue

被引:9
|
作者
Petitjean, Julien [1 ,2 ]
Grivel, Eric [2 ]
Bobillet, William [3 ]
Roussilhe, Patrick [1 ]
机构
[1] Ctr Jacqueline Auriol, THALES Syst Aeroportes, F-33608 Pessac, France
[2] Univ Bordeaux 1, ENSEIRB, CNRS, UMR 5218,IMS,Dept LAPS, F-33405 Talence, France
[3] IMRA, F-06904 Sophia Antipolis, France
关键词
Multichannel AR process; Estimation; Errors-in-variables; Extended Kalman Filter; Sigma-Point Kalman Filter; AUTOREGRESSIVE SIGNALS; IDENTIFICATION;
D O I
10.1007/s11760-009-0112-9
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In various applications from radar processing to mobile communication systems based on CDMA or OFDM, M-AR multichannel processes are often considered and may be combined with Kalman filtering. However, the estimations of the M-AR parameter matrices and the autocorrelation matrices of the additive noise and the driving process from noisy observations are key problems to be addressed. In this paper, we suggest solving them as an errors-in-variables issue. In that case, the noisy-observation autocorrelation matrix compensated by a specific diagonal block matrix and whose kernel is defined by the M-AR parameter matrices must be positive semi-definite. Hence, the parameter estimation consists in searching every diagonal block matrix that satisfies this property, in reiterating this search for a higher model order and then in extracting the solution that belongs to both sets. A comparative study is then carried out with existing methods including those based on the Extended Kalman Filter (EKF) and the Sigma-Point Kalman Filters (SPKF). It illustrates the relevance and advantages of the proposed approaches.
引用
收藏
页码:209 / 220
页数:12
相关论文
共 50 条
  • [1] Multichannel AR parameter estimation from noisy observations as an errors-in-variables issue
    Julien Petitjean
    Eric Grivel
    William Bobillet
    Patrick Roussilhe
    Signal, Image and Video Processing, 2010, 4 : 209 - 220
  • [2] RECURSIVE ERRORS-IN-VARIABLES APPROACH FOR AR PARAMETER ESTIMATION FROM NOISY OBSERVATIONS. APPLICATION TO RADAR SEA CLUTTER REJECTION
    Petitjean, J.
    Diversi, R.
    Grivel, E.
    Guidorzi, R.
    Roussilhe, P.
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 3401 - +
  • [3] Parameter estimation for errors-in-variables data
    Luus, R.
    Hernaez, H.
    2000, Univ Veszprem, Veszprem, Hungary (28):
  • [4] On parameter estimation for semi-linear errors-in-variables models
    Cui, HJ
    Li, RC
    JOURNAL OF MULTIVARIATE ANALYSIS, 1998, 64 (01) : 1 - 24
  • [5] Alternative formulae for parameter estimation in partial errors-in-variables models
    Yun Shi
    Peiliang Xu
    Jingnan Liu
    Chuang Shi
    Journal of Geodesy, 2015, 89 : 13 - 16
  • [6] Alternative formulae for parameter estimation in partial errors-in-variables models
    Shi, Yun
    Xu, Peiliang
    Liu, Jingnan
    Shi, Chuang
    JOURNAL OF GEODESY, 2015, 89 (01) : 13 - 16
  • [7] On Parameter Estimation for Semi-linear Errors-in-Variables Models
    Cui, H.
    Li, R.
    Journal of Multivariate Analysis, 64 (01):
  • [8] A RECURSIVE ERRORS-IN-VARIABLES METHOD FOR TRACKING TIME VARYING AUTOREGRESSIVE PARAMETERS FROM NOISY OBSERVATIONS
    Petitjean, Julien
    Grivel, Eric
    Diversi, Roberto
    Guidorzi, Roberto
    18TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2010), 2010, : 840 - 844
  • [9] Errors-in-variables estimation with wavelets
    Gencay, Ramazan
    Gradojevic, Nikola
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2011, 81 (11) : 1545 - 1564
  • [10] Speech enhancement combining optimal smoothing and errors-in-variables identification of noisy AR processes
    Bobillet, William
    Diversi, Roberto
    Grivel, Eric
    Guidorzi, Roberto
    Najim, Mohamed
    Soverini, Umberto
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2007, 55 (12) : 5564 - 5578