PRAGMA: Interactively Constructing Functional Brain Parcellations

被引:0
|
作者
Bayrak, Roza G. [1 ]
Hoang, Nhung [1 ]
Hansen, Colin B. [1 ]
Chang, Catie [1 ]
Berger, Matthew [1 ]
机构
[1] Vanderbilt Univ, 221 Kirkland Hall, Nashville, TN 37235 USA
关键词
Human-centered modeling; neuroimage analysis; functional parcellation; brain mapping; CLUSTER-ANALYSIS; FMRI; VISUALIZATION;
D O I
10.1109/VIS47514.2020.00016
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A prominent goal of neuroimaging studies is mapping the human brain, in order to identify and delineate functionally-meaningful regions and elucidate their roles in cognitive behaviors. These brain regions are typically represented by atlases that capture general trends over large populations. Despite being indispensable to neuroimaging experts, population-level atlases do not capture individual differences in functional organization. In this work, we present an interactive visualization method, PRAGMA, that allows domain experts to derive scan-specific parcellations from established atlases. PRAGMA features a user-driven, hierarchical clustering scheme for defining temporally correlated parcels in varying granularity. The visualization design supports the user in making decisions on how to perform clustering, namely when to expand, collapse, or merge parcels. This is accomplished through a set of linked and coordinated views for understanding the user's current hierarchy, assessing intra-cluster variation, and relating parcellations to an established atlas. We assess the effectiveness of PRAGMA through a user study with four neuroimaging domain experts, where our results show that PRAGMA shows the potential to enable exploration of individualized and state-specific brain parcellations and to offer interesting insights into functional brain networks.
引用
收藏
页码:46 / 50
页数:5
相关论文
共 50 条
  • [1] Functional Brain Parcellations of the Infant Brain and the Associated Developmental Trends
    Shi, Feng
    Salzwedel, Andrew P.
    Lin, Weili
    Gilmore, John H.
    Gao, Wei
    CEREBRAL CORTEX, 2018, 28 (04) : 1358 - 1368
  • [2] Brain topography beyond parcellations: Local gradients of functional maps
    Dohmatob, Elvis
    Richard, Hugo
    Pinho, Ana Luisa
    Thirion, Bertrand
    NEUROIMAGE, 2021, 229
  • [3] A dataset of multiresolution functional brain parcellations in an elderly population with no or mild cognitive impairment
    Tam, Angela
    Dansereau, Christian
    Badhwar, AmanPreet
    Orban, Pierre
    Belleville, Sylvie
    Chertkow, Howard
    Dagher, Alain
    Hanganu, Alexandru
    Monchi, Oury
    Rosa-Neto, Pedro
    Shmuel, Amir
    Breitner, John
    Bellec, Pierre
    DATA IN BRIEF, 2016, 9 : 1122 - 1129
  • [4] Standardizing human brain parcellations
    Lawrence, Ross M.
    Bridgeford, Eric W.
    Myers, Patrick E.
    Arvapalli, Ganesh C.
    Ramachandran, Sandhya C.
    Pisner, Derek A.
    Frank, Paige F.
    Lemmer, Allison D.
    Nikolaidis, Aki
    Vogelstein, Joshua T.
    SCIENTIFIC DATA, 2021, 8 (01) : 78
  • [5] Standardizing human brain parcellations
    Ross M. Lawrence
    Eric W. Bridgeford
    Patrick E. Myers
    Ganesh C. Arvapalli
    Sandhya C. Ramachandran
    Derek A. Pisner
    Paige F. Frank
    Allison D. Lemmer
    Aki Nikolaidis
    Joshua T. Vogelstein
    Scientific Data, 8
  • [6] FINE-SCALE PATTERNS DRIVING DYNAMIC FUNCTIONAL CONNECTIVITY PROVIDE MEANINGFUL BRAIN PARCELLATIONS
    Preti, Maria Giulia
    Van De Ville, Dimitri
    2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2017, : 2649 - 2653
  • [7] Interactively human: Sharing time, constructing materiality
    Roepstorff, Andreas
    BEHAVIORAL AND BRAIN SCIENCES, 2013, 36 (03) : 224 - 225
  • [8] Imaging-based parcellations of the human brain
    Eickhoff, Simon B.
    Yeo, B. T. Thomas
    Genon, Sarah
    NATURE REVIEWS NEUROSCIENCE, 2018, 19 (11) : 672 - 686
  • [9] sGraSP: A graph-based method for the derivation of subject-specific functional parcellations of the brain
    Honnorat, N.
    Satterthwaite, T. D.
    Gur, R. E.
    Gur, R. C.
    Davatzikos, C.
    JOURNAL OF NEUROSCIENCE METHODS, 2017, 277 : 1 - 20
  • [10] Using connectomics for predictive assessment of brain parcellations
    Albers, Kristoffer J.
    Ambrosen, Karen S.
    Liptrot, Matthew G.
    Dyrby, Tim B.
    Schmidt, Mikkel N.
    Morup, Morten
    NEUROIMAGE, 2021, 238