Thermally conductive and stretchable thermal interface materials prepared via vertical orientation of flake graphite

被引:25
|
作者
He, Hong [1 ]
Zhang, Yuexing [1 ]
Zeng, Xiaoliang [2 ]
Ye, Zhenqiang [2 ]
Zhang, Chenxu [2 ]
Liang, Ting [2 ]
Li, Junwei [2 ]
Hu, Qinghua [2 ]
Zhang, Ping [1 ]
机构
[1] Guilin Univ Elect Technol, Sch Mech & Elect Engn, 1 Jinji Rd, Guilin 541004, Guangxi, Peoples R China
[2] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen Inst Adv Elect Mat, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Thermal interface materials; Flake graphite; Thermal conductivity; Stretchability; Thermal contact resistance; CARBON-FIBER; POLYMER COMPOSITES; ENHANCEMENT; PERFORMANCE; IMPROVEMENT; DEPOSITION; NANOTUBES; NETWORKS; LAMINATE;
D O I
10.1016/j.coco.2021.100795
中图分类号
TB33 [复合材料];
学科分类号
摘要
With the increase of power density of electronic devices, there is a compromise between thermal conductivity and stretchability of thermal interface materials to reduce thermal contact resistance, enhance interfacial heat transfer, and relieve the warpage failure caused by stress concentration. Here, we report on the styrene-ethylene/butylene-styrene block copolymer (SEBS)/flake graphite composite thermal interface materials, fabricated via the vertical orientation of flake graphite. When the mass ratio of flake graphite to SEBS is 1:1, the thermal interface material exhibits a high out-of-plane thermal conductivity of 10.08 W/(m K) and maintains a considerable stretchability (elongation at break of 63%). The balance of thermal conductivity and stretchability keeps the thermal contact resistance of thermal interface material at a low value of 0.51x 10(-4) K .m(2)/W. The thermal interface material consisted of SEBS/flake graphite builds a new way to address the challenge of thermal management in modern electronic products.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Effect of flake graphite orientation on thermal conductivity of flake graphite/polypropylene, flake graphite/nylon66 composites
    Wu, D. (wudaming@vip.163.com), 1600, Beijing University of Aeronautics and Astronautics (BUAA) (31):
  • [2] Preparation of graphene via thermal reduction of flake graphite
    The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan
    430081, China
    Kuei Suan Jen Hsueh Pao, 12 (1790-1794):
  • [3] Highly stretchable thermal interface materials with uniformly dispersed network of exfoliated graphite nanoplatelets via ball milled processing route
    Chang, Tien-Chan
    Liao, Chun-An
    Lin, Zhi-Yu
    Fuh, Yiin-Kuen
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2018, 24 (09): : 3667 - 3675
  • [4] Highly stretchable thermal interface materials with uniformly dispersed network of exfoliated graphite nanoplatelets via ball milled processing route
    Tien-Chan Chang
    Chun-An Liao
    Zhi-Yu Lin
    Yiin-Kuen Fuh
    Microsystem Technologies, 2018, 24 : 3667 - 3675
  • [5] Highly Thermally Conductive and Flexible Thermal Interface Materials with Aligned Graphene Lamella Frameworks
    Huang, Kun
    Pei, Songfeng
    Wei, Qinwei
    Zhang, Qing
    Guo, Jiaqi
    Ma, Chaoqun
    Cheng, Hui-Ming
    Ren, Wencai
    ACS NANO, 2024, 18 (34) : 23468 - 23476
  • [6] Metal-Level Thermally Conductive yet Soft Graphene Thermal Interface Materials
    Dai, Wen
    Ma, Tengfei
    Yan, Qingwei
    Gao, Jingyao
    Tan, Xue
    Lv, Le
    Hou, Hao
    Wei, Qiuping
    Yu, Jinhong
    Wu, Jianbo
    Yao, Yagang
    Du, Shiyu
    Sun, Rong
    Jiang, Nan
    Wang, Yan
    Kong, Jing
    Wong, Chingping
    Maruyama, Shigeo
    Lin, Cheng-Te
    ACS NANO, 2019, 13 (10) : 11561 - 11571
  • [7] Thermally conductive composites obtained by flake graphite filling immiscible Polyamide 6/Polycarbonate blends
    Zhou, Shengtai
    Chen, Yang
    Zou, Huawei
    Liang, Mei
    THERMOCHIMICA ACTA, 2013, 566 : 84 - 91
  • [8] Bulk thermally conductive polyethylene as a thermal interface material
    Ren, Gangchen
    Wang, Zhongtong
    Huang, Xinzhu
    Hur, Daniel
    Pfeifer, Mark A.
    Silberstein, Meredith N.
    Tian, Zhiting
    MATERIALS HORIZONS, 2025,
  • [9] Thermal management with a highly emissive and thermally conductive graphite absorber
    Guo, Tingbiao
    Sun, Yaoran
    Evans, Julian
    Wang, Nan
    Fu, Yang
    He, Sailing
    AIP ADVANCES, 2019, 9 (02)
  • [10] Highly thermal-conductive graphite flake/Cu composites prepared by sintering intermittently electroplated core-shell powders
    Hong Sun
    Nan Deng
    Jianqiang Li
    Gang He
    Jiangtao Li
    JournalofMaterialsScience&Technology, 2021, 61 (02) : 93 - 99