On the geometry of field-theoretic Gerstenhaber structures

被引:1
|
作者
Paufler, C [1 ]
机构
[1] Univ Freiburg, Fak Phys, D-79104 Freiburg, Germany
关键词
geometric field theory; multisymplectic geometry; Hamiltonian formulation; Gerstenhaber algebra;
D O I
10.1016/S0034-4877(01)80080-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Field-theoretical models with first order Lagrangian can be formulated in a covariant Hamiltonian formalism. In this article, the geometrical construction of the Gerstenhaber structure that encodes the equations of motion is explained for arbitrary fibre bundles. Special emphasis has been put on naturality of the constructions. Further, the treatment of symmetries is explained. Finally, the canonical field theoretical 2-form is obtained by pull-back and integration of the polysymplectic form over space like hypersurfaces.
引用
收藏
页码:203 / 210
页数:8
相关论文
共 50 条
  • [1] Field-theoretic polymer simulations
    Ganesan, V
    Fredrickson, GH
    EUROPHYSICS LETTERS, 2001, 55 (06): : 814 - 820
  • [2] A field-theoretic invariant for domains
    Dobbs D.E.
    Rendiconti del Circolo Matematico di Palermo, 2005, 54 (3) : 396 - 408
  • [3] Supersymmetric field-theoretic models on a supermanifold
    Franco, DHT
    Polito, CMM
    JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (04) : 1447 - 1473
  • [4] A FIELD-THEORETIC METHOD IN THE THEORY OF SUPERCONDUCTIVITY
    ZAWADOWSZKI, A
    POCSIK, G
    PHYSICS LETTERS, 1963, 7 (03): : 173 - 175
  • [5] FIELD-THEORETIC RAMIFICATIONS OF BARUT METHOD
    GARCZYNSKI, W
    KLIMEK, M
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1991, 106 (01): : 97 - 99
  • [6] Field-theoretic simulations in the Gibbs ensemble
    Riggleman, Robert A.
    Fredrickson, Glenn H.
    JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (02):
  • [7] FIELD-THEORETIC FORMALISM FOR SEVERAL POLYMERS
    BURCH, DJ
    MOORE, MA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1976, 9 (03): : 451 - 461
  • [8] A field-theoretic model for Hodge theory
    Saurabh Gupta
    R. P. Malik
    The European Physical Journal C, 2008, 58 : 517 - 529
  • [9] Quantum field-theoretic machine learning
    Bachtis, Dimitrios
    Aarts, Gert
    Lucini, Biagio
    PHYSICAL REVIEW D, 2021, 103 (07)
  • [10] A Field-Theoretic Approach to the Wiener Sausage
    S. Nekovar
    G. Pruessner
    Journal of Statistical Physics, 2016, 163 : 604 - 641