Mapping Regional Soil Organic Matter Based on Sentinel-2A and MODIS Imagery Using Machine Learning Algorithms and Google Earth Engine

被引:34
|
作者
Zhang, Meiwei [1 ]
Zhang, Meinan [2 ,3 ]
Yang, Haoxuan [4 ]
Jin, Yuanliang [5 ]
Zhang, Xinle [1 ]
Liu, Huanjun [1 ,6 ]
机构
[1] Northeast Agr Univ, Sch Publ Adm & Law, Harbin 150030, Peoples R China
[2] Tsinghua Univ, Dept Earth Syst Sci, Beijing 100089, Peoples R China
[3] Chinese Acad Forestry, Key Lab Forest Ecol & Environm, State Forestry Adm, Inst Forest Ecol Environm & Protect, Beijing 100091, Peoples R China
[4] Tongji Univ, Coll Surveying & Geoinformat, Shanghai 200092, Peoples R China
[5] Tsinghua Univ, Sch Environm, Beijing 100089, Peoples R China
[6] Chinese Acad Sci, Northeast Inst Geog & Agroecol, Changchun 130012, Peoples R China
关键词
soil organic matter; Sentinel-2A; MODIS; machine learning algorithms; Google Earth Engine; Songnen Plain; China; ARTIFICIAL NEURAL-NETWORK; INFRARED REFLECTANCE SPECTROSCOPY; SPATIAL PREDICTION; CARBON CONTENT; RANDOM FORESTS; TOTAL NITROGEN; SONGNEN PLAIN; REGRESSION; STOCKS; VEGETATION;
D O I
10.3390/rs13152934
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Many studies have attempted to predict soil organic matter (SOM), whereas mapping high-precision and high-resolution SOM maps remains a challenge due to the difficulty of selecting appropriate satellite data sources and prediction algorithms. This study aimed to investigate the influence of different remotely sensed images and machine learning algorithms on SOM prediction. We constructed two comparative experiments, i.e., full-band and common-band variable datasets of Sentinel-2A and MODIS images using Google Earth Engine (GEE). The predictive performances of random forest (RF), artificial neural network (ANN), and support vector regression (SVR) algorithms were evaluated, and the SOM map was generated for the Songnen Plain. Results showed that the model based on the full-band Sentinel-2A dataset achieved the best performance. The application of Sentinel-2A data resulted in mean relative improvements (RIs) of 7.67% and 5.87%, respectively. The RF achieved a lower root mean squared error (RMSE = 0.68%) and a higher coefficient of determination (R-2 = 0.67) in all of the predicted scenarios than ANN and SVR. The resultant SOM map accurately characterized the SOM spatial distribution. Therefore, the Sentinel-2A data have obvious advantages over MODIS due to their higher spectral and spatial resolutions, and the combination of the RF algorithm and GEE is an effective approach to SOM mapping.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Assessing the performance of machine learning algorithms for soil salinity mapping in Google Earth Engine platform using Sentinel-2A and Landsat-8 OLI data
    Aksoy, Samet
    Yildirim, Aylin
    Gorji, Taha
    Hamzehpour, Nikou
    Tanik, Aysegul
    Sertel, Elif
    ADVANCES IN SPACE RESEARCH, 2022, 69 (02) : 1072 - 1086
  • [2] Predicting soil organic matter contents in cultivated land using Google Earth Engine and machine learning
    Guo J.
    Long H.
    He J.
    Mei X.
    Yang G.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2022, 38 (18): : 130 - 137
  • [3] High-Precision Mapping of Soil Organic Matter Based on UAV Imagery Using Machine Learning Algorithms
    Zhou, Jingping
    Xu, Yaping
    Gu, Xiaohe
    Chen, Tianen
    Sun, Qian
    Zhang, Sen
    Pan, Yuchun
    DRONES, 2023, 7 (05)
  • [4] Mapping dynamics of soil organic matter in croplands with MODIS data and machine learning algorithms
    Chen, Di
    Chang, Naijie
    Xiao, Jingfeng
    Zhou, Qingbo
    Wu, Wenbin
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 669 : 844 - 855
  • [5] Using Machine Learning Algorithms Based on GF-6 and Google Earth Engine to Predict and Map the Spatial Distribution of Soil Organic Matter Content
    Ye, Zhishan
    Sheng, Ziheng
    Liu, Xiaoyan
    Ma, Youhua
    Wang, Ruochen
    Ding, Shiwei
    Liu, Mengqian
    Li, Zijie
    Wang, Qiang
    SUSTAINABILITY, 2021, 13 (24)
  • [6] Regional mapping of soil organic matter content using multitemporal synthetic Landsat 8 images in Google Earth Engine
    Luo, Chong
    Zhang, Xinle
    Meng, Xiangtian
    Zhu, Houwen
    Ni, Chunpeng
    Chen, Meihe
    Liu, Huanjun
    CATENA, 2022, 209
  • [7] Mapping National Mangrove Cover for Belize Using Google Earth Engine and Sentinel-2 Imagery
    Cissell, Jordan R.
    Canty, Steven W. J.
    Steinberg, Michael K.
    Simpson, Lorae T.
    APPLIED SCIENCES-BASEL, 2021, 11 (09):
  • [8] Mapping gully affected areas by using Sentinel 2 imagery and digital elevation model based on the Google Earth Engine
    Huang, Xiaohui
    Xiong, Liyang
    Jiang, Yinghui
    Li, Sijin
    Liu, Kai
    Ding, Hu
    Tang, Guoan
    CATENA, 2023, 233
  • [9] Estimating Soil Organic Matter Content Using Sentinel-2 Imagery by Machine Learning in Shanghai
    Wang, Xinxin
    Han, Jigang
    Wang, Xia
    Yao, Huaiying
    Zhang, Lang
    IEEE ACCESS, 2021, 9 : 78215 - 78225
  • [10] Regional soil organic matter mapping models based on the optimal time window, feature selection algorithm and Google Earth Engine
    Luo, Chong
    Zhang, Xinle
    Wang, Yihao
    Men, Zhibo
    Liu, Huanjun
    SOIL & TILLAGE RESEARCH, 2022, 219