Global F-splitting of surfaces admitting an int-amplified endomorphism

被引:0
|
作者
Yoshikawa, Shou [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, 153-8914 Komaba, Tokyo, Japan
关键词
14J17; 08A35; 14E30; 20K30; 14G17; SINGULARITIES; VARIETIES; THEOREM;
D O I
10.1007/s00229-021-01331-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the global F-splitting of varieties admitting an int-amplified endomoprhism. We prove that surfaces admitting an int-amplified endomorphism are of dense globally F-split type and, in particular, of Calabi-Yau type.
引用
收藏
页码:271 / 296
页数:26
相关论文
共 9 条
  • [1] Global F-splitting of surfaces admitting an int-amplified endomorphism
    Shou Yoshikawa
    manuscripta mathematica, 2022, 169 : 271 - 296
  • [2] Structure of Fano fibrations of varieties admitting an int-amplified endomorphism
    Yoshikawa, Shou
    ADVANCES IN MATHEMATICS, 2021, 391
  • [3] Kawaguchi–Silverman conjecture for endomorphisms on rationally connected varieties admitting an int-amplified endomorphism
    Yohsuke Matsuzawa
    Shou Yoshikawa
    Mathematische Annalen, 2022, 382 : 1681 - 1704
  • [4] Kawaguchi-Silverman conjecture for endomorphisms on rationally connected varieties admitting an int-amplified endomorphism
    Matsuzawa, Yohsuke
    Yoshikawa, Shou
    MATHEMATISCHE ANNALEN, 2022, 382 (3-4) : 1681 - 1704
  • [5] Potential density of projective varieties having an int-amplified endomorphism
    Jia, Jia
    Shibata, Takahiro
    Zhang, De-Qi
    NEW YORK JOURNAL OF MATHEMATICS, 2022, 28 : 433 - 444
  • [6] Normal Projective Varieties Admitting Polarized or Int-amplified Endomorphisms
    Meng, Sheng
    Zhang, De-Qi
    ACTA MATHEMATICA VIETNAMICA, 2020, 45 (01) : 11 - 26
  • [7] Normal Projective Varieties Admitting Polarized or Int-amplified Endomorphisms
    Sheng Meng
    De-Qi Zhang
    Acta Mathematica Vietnamica, 2020, 45 : 11 - 26
  • [8] Int-amplified Endomorphisms on Normal Projective Surfaces
    Matsuzawa, Yohsuke
    Yoshikawa, Shou
    TAIWANESE JOURNAL OF MATHEMATICS, 2021, 25 (04): : 681 - 697
  • [9] Global F-splitting ratio of modules
    De Stefani, Alessandro
    Polstra, Thomas
    Yao, Yongwei
    JOURNAL OF ALGEBRA, 2022, 610 : 773 - 792