Blob-level Active-Passive Data Fusion for Benthic Classification

被引:2
|
作者
Park, Joong Yong [1 ]
Kalluri, Hemanth [1 ]
Mathur, Abhinav [1 ]
Ramnath, Vinod [1 ]
Kim, Minsu [1 ]
Aitken, Jennifer [1 ]
Tuell, Grady [2 ]
机构
[1] Optech Inc, 7225 Stennis Airport Dr,Suite 300, Kiln, MS 39556 USA
[2] Georgia Tech Res Inst, Electro Opt Syst, Atlanta, GA 30332 USA
关键词
lidar; hyperspectral; data fusion; blob-level; benthic classification; MEAN SHIFT;
D O I
10.1117/12.918646
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We extend the data fusion pixel level to the more semantically meaningful blob level, using the mean-shift algorithm to form labeled blobs having high similarity in the feature domain, and connectivity in the spatial domain. We have also developed Bhattacharyya Distance (BD) and rule-based classifiers, and have implemented these higher-level data fusion algorithms into the CZMIL Data Processing System. Applying these new algorithms to recent SHOALS and CASI data at Plymouth Harbor, Massachusetts, we achieved improved benthic classification accuracies over those produced with either single sensor, or pixel-level fusion strategies. These results appear to validate the hypothesis that classification accuracy may be generally improved by adopting higher spatial and semantic levels of fusion.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Active-Passive Data Fusion Algorithms for Seafloor Imaging and Classification from CZMIL Data
    Park, Joong Yong
    Ramnath, Vinod
    Feygels, Viktor
    Kim, Minsu
    Mathur, Abhinav
    Aitken, Jen
    Tuell, Grady
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XVI, 2010, 7695
  • [2] Passive Beamforming Enhancements in Relation to Active-Passive Data Fusion
    Yocom, Bryan A.
    Yudichak, T. W.
    La Cour, Brian R.
    2008 42ND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, VOLS 1-4, 2008, : 383 - 387
  • [3] Active-Passive Spaceborne Data Fusion for Mapping Nearshore Bathymetry
    Forfinski-Sarkozi, Nicholas A.
    Parrish, Christopher E.
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2019, 85 (04): : 281 - 295
  • [4] A Hybrid Active-Passive Approach to Imbalanced Nonstationary Data Stream Classification
    Malialis, Kleanthis
    Roveri, Manuel
    Alippi, Cesare
    Panayiotou, Christos G.
    Polycarpou, Marios M.
    2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 1021 - 1027
  • [5] ACTIVE-PASSIVE VIBRATION CONTROL FOR FANS IN THE DATA SERVER
    Chen, Han-Sheng
    Chang, Jen-Yuan
    PROCEEDINGS OF THE ASME 2021 30TH CONFERENCE ON INFORMATION STORAGE AND PROCESSING SYSTEMS (ISPS2021), 2021,
  • [6] Enhancing Soil Moisture Active-Passive Estimates with Soil Moisture Active-Passive Reflectometer Data Using Graph Signal Processing
    Garcia-Cardona, Johanna
    Rodriguez-Alvarez, Nereida
    Munoz-Martin, Joan Francesc
    Bosch-Lluis, Xavier
    Oudrhiri, Kamal
    REMOTE SENSING, 2024, 16 (08)
  • [7] Multi-Band Hybrid Active-Passive Radar Sensor Fusion
    Beasley, Piers J.
    Ritchie, Matthew A.
    2023 IEEE RADAR CONFERENCE, RADARCONF23, 2023,
  • [8] SATELLITE DERIVED ACTIVE-PASSIVE FUSION BATHYMETRY BASED ON GRU MODEL
    Leng, Zihao
    Zhang, Jie
    Ma, Yi
    Zhang, Jingyu
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 7026 - 7029
  • [9] Experimental research of range-gated active-passive image fusion
    Lu, W. (hit_luwei@yahoo.com.cn), 1600, Science Press (39):
  • [10] Multidimensional classification of active-passive remotely sensed data for monitoring of hazard phenomena occurring on drained soils
    Bychkov, D.M.
    Ivanov, V.K.
    Tsymbal, V.N.
    Yatsevich, S.Ye.
    Telecommunications and Radio Engineering (English translation of Elektrosvyaz and Radiotekhnika), 2015, 74 (02): : 137 - 146