A procedure for specific charge and cycling performance measurements on LiMn2O4 spinels for lithium-ion batteries

被引:4
|
作者
Lanz, M
Kormann, C
Novák, P [1 ]
机构
[1] Paul Scherrer Inst, Lab Electrochem, CH-5232 Villigen, Switzerland
[2] BASF AG, D-67056 Ludwigshafen, Germany
关键词
cycle life; elevated-temperature performance; LiMn2O4; spinel; lithium-ion battery; specific charge;
D O I
10.1007/s10008-003-0366-z
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A procedure for determining the specific charge and the cycling performance of lithium manganese oxide spinels (LiMn2O4) for rechargeable lithium-ion batteries has been developed. Measurements were made in two-electrode electrochemical test cells with an internal arrangement resembling that of coin cells, with either metallic lithium or a graphite composite counter electrode. Applying the procedure to various LiMn2O4 spinels with different degrees of manganese substitution, Li1+yMn2-yO4 (0.05less than or equal toyless than or equal to0.1), and different surface coatings, we observed an increase of the spinel cycle life with an increasing degree of manganese substitution, at the expense of a small decrease of the specific charge. The influence of the type of counter electrode on the specific charge measurements was examined. Furthermore, we investigated the influence of the temperature, 25 degreesC vs. 55 degreesC, on the specific charge and the cycling performance of the spinels with different degrees of manganese substitution. A survey of the combined effects of the counter electrode and the temperature on the specific charge measurements is given.
引用
收藏
页码:658 / 664
页数:7
相关论文
共 50 条
  • [1] A procedure for specific charge and cycling performance measurements on LiMn2O4 spinels for lithium-ion batteries
    M. Lanz
    C. Kormann
    P. Novák
    Journal of Solid State Electrochemistry, 2003, 7 : 658 - 664
  • [2] Electrochemical performance of nanosized LiMn2O4 for lithium-ion batteries
    Wu, HM
    Tu, JP
    Yuan, YF
    Li, Y
    Zhang, WK
    Huang, H
    PHYSICA B-CONDENSED MATTER, 2005, 369 (1-4) : 221 - 226
  • [3] LiMn2O4 for 4 V lithium-ion batteries
    Manev, V
    Banov, B
    Momchilov, A
    Nassalevskaa, A
    JOURNAL OF POWER SOURCES, 1995, 57 (1-2) : 99 - 103
  • [4] LiMn2O4 for 4 V lithium-ion batteries
    Bulgarian Acad of Sciences, Sofia, Bulgaria
    J Power Sources, 1-2 (99-103):
  • [5] Lithium-ion batteries based on overlithiated LiMn2O4
    Peramunage, D
    Abraham, KM
    Willstaedt, EB
    THIRTEENTH ANNUAL BATTERY CONFERENCE ON APPLICATIONS AND ADVANCES, 1998, : 107 - 112
  • [6] Investigation on the temperature tolerance of LiMn2O4 in lithium-ion batteries
    Li, Shiyou
    Han, Yamin
    Geng, Tongtong
    Wang, Peng
    Li, Wenbo
    Yang, Li
    Li, Zhaojuan
    NEW JOURNAL OF CHEMISTRY, 2020, 44 (22) : 9540 - 9545
  • [7] Ultrathin surface coatings to enhance cycling stability of LiMn2O4 cathode in lithium-ion batteries
    Guan, Dongsheng
    Wang, Ying
    IONICS, 2013, 19 (01) : 1 - 8
  • [8] Ultrathin surface coatings to enhance cycling stability of LiMn2O4 cathode in lithium-ion batteries
    Dongsheng Guan
    Ying Wang
    Ionics, 2013, 19 : 1 - 8
  • [9] LiMn2O4 - MXene nanocomposite cathode for high-performance lithium-ion batteries
    Ali, Muntaha Elsadig Siddig
    Tariq, Hanan Abdurehman
    Moossa, Buzaina
    Qureshi, Zawar Alam
    Kahraman, Ramazan
    Al-Qaradawi, Siham
    Shakoor, R. A.
    ENERGY REPORTS, 2024, 11 : 2401 - 2414
  • [10] The role of oxygen vacancies in the performance of LiMn2O4 spinel cathodes for lithium-ion batteries
    Wang, Jing
    Xing, Haiyang
    Hou, Wenqiang
    Xu, Youlong
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (28) : 18903 - 18914