On a Further Simulation of Shock-Bubble Interactions

被引:0
|
作者
Goncalves, Eric [1 ]
Dia Zeidan [2 ]
机构
[1] ENSMA, CNRS, Pprime, UPR 3346, Poitiers, France
[2] German Jordanian Univ, Sch Basic Sci & Humanities, Amman, Jordan
关键词
two-phase flow; shock-bubble interaction; homogeneous model; 2-PHASE FLOW;
D O I
10.1063/1.4992165
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a numerical study of the shock-bubble interaction of a compressible two-phase flows. The investigations such flows are performed using an inviscid one-fluid solver in the presence of shock wave and strong rarefaction waves similar to cavitation. The code is composed by three conservation laws for mixture variables, namely mass, momentum and total energy along with supplementary transport equation for the volume fraction of the gas phase. Simulation results are carried out on a shock-bubble interaction case leading to the cavity collapse. The results of the numerical simulation exhibit a good agreement with numerical results presented by other researchers.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Shock-Bubble Interactions
    Ranjan, Devesh
    Oakley, Jason
    Bonazza, Riccardo
    ANNUAL REVIEW OF FLUID MECHANICS, VOL 43, 2011, 43 : 117 - 140
  • [2] Numerical simulation of convergence effect on shock-bubble interactions
    Liang Yu
    Guan Ben
    Zhai Zhi-Gang
    Luo Xi-Sheng
    ACTA PHYSICA SINICA, 2017, 66 (06)
  • [3] Numerical investigations of shock-bubble interactions in mercury
    Takahira, Hiroyuki
    Matsuno, Takahiro
    Shuto, Keisuke
    FLUID DYNAMICS RESEARCH, 2008, 40 (7-8) : 510 - 520
  • [4] Radiation and heat transport in divergent shock-bubble interactions
    Kurzer-Ogul, K.
    Haines, B. M.
    Montgomery, D. S.
    Pandolfi, S.
    Sauppe, J. P.
    Leong, A. F. T.
    Hodge, D.
    Kozlowski, P. M.
    Marchesini, S.
    Cunningham, E.
    Galtier, E.
    Khaghani, D.
    Lee, H. J.
    Nagler, B.
    Sandberg, R. L.
    Gleason, A. E.
    Aluie, H.
    Shang, J. K.
    PHYSICS OF PLASMAS, 2024, 31 (03)
  • [5] The Euler equations for multiphase compressible flow in conservation form - Simulation of shock-bubble interactions
    Hankin, RKS
    JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 172 (02) : 808 - 826
  • [6] INVESTIGATING UNSTEADY FLOW PHYSICS WITHIN SHOCK-BUBBLE INTERACTIONS
    Ferguson, Frederick
    Niu Xinru
    Feng, Dehua
    PROCEEDINGS OF ASME 2024 FLUIDS ENGINEERING DIVISION SUMMER MEETING, VOL 2, FEDSM 2024, 2024,
  • [7] On the dynamics of a shock-bubble interaction
    Quirk, JJ
    Karni, S
    JOURNAL OF FLUID MECHANICS, 1996, 318 : 129 - 163
  • [8] Scaling in the shock-bubble interaction
    Levy, K
    Sadot, O
    Rikanati, A
    Kartoon, D
    Srebro, Y
    Yosef-Hai, A
    Ben-Dor, G
    Shvarts, D
    LASER AND PARTICLE BEAMS, 2003, 21 (03) : 335 - 339
  • [9] Numerical simulations of shock-bubble interactions using an improved Ghost Fluid Method
    Takahira, Hiroyuki
    Yuasa, Shinya
    PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER CONFERENCE - 2005, VOL 1, PTS A AND B, 2005, : 777 - 785
  • [10] Shock-bubble interactions: Features of divergent shock-refraction geometry observed in experiments and simulations
    Ranjan, Devesh
    Niederhaus, John H. J.
    Oakley, Jason G.
    Anderson, Mark H.
    Bonazza, Riccardo
    Greenough, Jeffrey A.
    PHYSICS OF FLUIDS, 2008, 20 (03)