A Blended Sea Ice Concentration Product from AMSR2 and VIIRS

被引:5
|
作者
Dworak, Richard [1 ]
Liu, Yinghui [2 ]
Key, Jeffrey [2 ]
Meier, Walter N. [3 ]
机构
[1] Univ Wisconsin, Cooperat Inst Meteorol Satellite Studies, 1225 West Dayton St, Madison, WI 53706 USA
[2] NOAA NESDIS, Ctr Satellite Applicat & Res, 1225 West Dayton St, Madison, WI 53706 USA
[3] Univ Colorado, Natl Snow & Ice Data Ctr, CIRES, 449 UCB, Boulder, CO 80309 USA
关键词
Arctic; sea ice concentration; melting ice; high spatial resolution; blending technique; best-linear unbiased estimator; thermal infrared; visible; NDSI; passive microwave; uncertainties; VIIRS; AMSR2; Sentinel; Synthetic Aperture Radar; SATELLITE; VALIDATION; RETRIEVAL; SURFACE; ENHANCEMENT; ALGORITHMS; ATMOSPHERE; TRENDS; CLOUD;
D O I
10.3390/rs13152982
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
An effective blended Sea-Ice Concentration (SIC) product has been developed that utilizes ice concentrations from passive microwave and visible/infrared satellite instruments, specifically the Advanced Microwave Scanning Radiometer-2 (AMSR2) and the Visible Infrared Imaging Radiometer Suite (VIIRS). The blending takes advantage of the all-sky capability of the AMSR2 sensor and the high spatial resolution of VIIRS, though it utilizes only the clear sky characteristics of VIIRS. After both VIIRS and AMSR2 images are remapped to a 1 km EASE-Grid version 2, a Best Linear Unbiased Estimator (BLUE) method is used to combine the AMSR2 and VIIRS SIC for a blended product at 1 km resolution under clear-sky conditions. Under cloudy-sky conditions the AMSR2 SIC with bias correction is used. For validation, high spatial resolution Landsat data are collocated with VIIRS and AMSR2 from 1 February 2017 to 31 October 2019. Bias, standard deviation, and root mean squared errors are calculated for the SICs of VIIRS, AMSR2, and the blended field. The blended SIC outperforms the individual VIIRS and AMSR2 SICs. The higher spatial resolution VIIRS data provide beneficial information to improve upon AMSR2 SIC under clear-sky conditions, especially during the summer melt season, as the AMSR2 SIC has a consistent negative bias near and above the melting point.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Downscaling of AMSR2 Sea Ice Concentration Using aWeighting Scheme Derived from MODIS Sea Ice Cover Product
    Ahn, Jihye
    Hong, Sungwook
    Cho, Jaeil
    Lee, Yang-Won
    KOREAN JOURNAL OF REMOTE SENSING, 2014, 30 (05) : 687 - 701
  • [2] Operational Implementation of Sea Ice Concentration Estimates From the AMSR2 Sensor
    Meier, Walter N.
    Stewart, J. Scott
    Liu, Yinghui
    Key, Jeffrey
    Miller, Jeffrey A.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (09) : 3904 - 3911
  • [3] Assimilating Retrievals of Sea Surface Temperature from VIIRS and AMSR2
    Brasnett, Bruce
    Colan, Dorina Surcel
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2016, 33 (02) : 361 - 375
  • [4] RETRIEVAL AND VALIDATION OF SEA ICE CONCENTRATION FROM AMSR-E/AMSR2 IN POLAR REGIONS
    Shi, Qian
    Su, Jie
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 7093 - 7096
  • [5] VERIFICATION OF THE SEA ICE CONCENTRATION RETRIEVALS FROM THE MTVZA-GYA MEASUREMENTS USING AMSR2 SATELLITE PRODUCT.
    Zabolotskikh, Elizaveta
    Balashova, E. A.
    Azarov, S. M.
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3826 - 3829
  • [6] THRESHOLD VALUES FOR WEATHER FILTERS IN AMSR2 SEA ICE CONCENTRATION RETRIEVAL ALGORITHMS
    Elizaveta, Zabolotskikh
    Chapron, Bertrand
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 7348 - 7351
  • [7] An Analysis of Arctic Sea Ice Leads Retrieved from AMSR-E/AMSR2
    Li, Ming
    Liu, Jiping
    Qu, Meng
    Zhang, Zhanhai
    Liang, Xi
    REMOTE SENSING, 2022, 14 (04)
  • [8] A NEW WEATHER FILTER FOR REDUCING WEATHER EFFECT IN CALCULATING SEA ICE CONCENTRATION FROM AMSR2 DATA
    Cho, K.
    Naoki, K.
    GEOSPATIAL WEEK 2023, VOL. 10-1, 2023, : 793 - 798
  • [9] Evaluation of the AMSR2 Ice Extent at the Arctic Sea Ice Edge Using an SAR-Based Ice Extent Product
    Sun, Yan
    Ye, Yufang
    Wang, Shaoyin
    Liu, Chong
    Chen, Zhuoqi
    Cheng, Xiao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [10] Wintertime Emissivities of the Arctic Sea Ice Types at the AMSR2 Frequencies
    Zabolotskikh, Elizaveta
    Azarov, Sergey
    REMOTE SENSING, 2022, 14 (23)