Principal functions of non-selfadjoint discrete Sturm-Liouville equations with quadratic spectral parameter in boundary conditions

被引:2
|
作者
Koprubasi, Turhan [1 ,3 ]
Yokus, Nihal [2 ]
机构
[1] Kastamonu Univ, Dept Math, Kastamonu, Turkey
[2] Karamanoglu Mehmetbey Univ, Dept Math, Karaman, Turkey
[3] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
关键词
Discrete equations; eigenparameter; spectral analysis; eigenvalues; principal functions; DIFFERENCE-OPERATORS; SINGULARITIES; EXPANSION; PENCIL;
D O I
10.1080/17476933.2017.1322073
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the principal functions corresponding to the eigenvalues and the spectral singularities of the boundary value problem (BVP) a(n-1)y(n-1) + b(n)y(n) + a(n)y(n+1) = lambda y(n), n is an element of N (gamma(0) + gamma(1)lambda +.2.2)y(1) + (beta(0) + beta(1)lambda + beta(2)lambda(2))y(0) = 0, where (a(n)) and (b(n)), n is an element of N are complex sequences, gamma(i), beta(i) is an element of C, i = 0, 1, 2 and lambda is a eigenparameter.
引用
收藏
页码:472 / 481
页数:10
相关论文
共 50 条